—

UEL

\

o 1CIT2023

== k
_Lﬂ{ﬂ % IC I T The 2nd International Conference on Intelligence of Things

The sity of Elec

The 3rd Symposium on Computer Science
& Engineering (SCSE 2023)

RISC-V Trusted Platform Module (TPM) and
Trusted Execution Environment (TEE)

Trong-Thuc Hoang and Cong-Kha Pham
University of Electro-Communications (UEC), Tokyo, Japan

2023/10/27

~NOo Ok W

o= VT {DX?— ICIT2023

IC I T The 2nd International Conference on Intelligence of Things

Outline

Introduction
TPM and TEE
Why RISC-V?
Proposed System
Peripherals
Result
Conclusion

1.

Introduction

ICIT2023

The 2nd International Conference on Intelligence of Things

Outline

ICIT

1. Introduction (1/8) University

The University of
Electro-Communications

1. Introduction (2/8) University

UEC’ History of UEC

1918 Established as “The Technical Institute for
Wireless- Communications”

1949 Promoted to the National University status as
“The University of Electro-Communications”

2004 Reformed as a National University Corporation

2013 Authorized as “The Enhancement of Research
Universities”

2018 Observes its Centennial

1. Introduction (3/8) University

UEC Location of UEC Campus

A convenient location
JAPAN TOKYO

15 minutes to Shinjuku, a major business center

1 hour from Tokyo Airport by Airport Shuttle bus.
With beautiful suburban and historical surroundings

/

Access

To Sendai.Niigata,Nagano

Tohoku Shinkansen,
Joetsu Shinkansen,
Hokuriku Shinkansen

Tokyo Airport(Haneda) Chofu

Tokaido Shinkansen,
Sanyou Shinkansen

1. Introduction (4/8) University
@ UEC Statistics (as of May 1, 2023)

1. One Undergraduate and One Graduate Schools
* Undergraduate School of Informatics and Engineering

* Graduate School of Informatics and Engineering

2. Number of Students: 4,801 (305 international students)

» Undergraduate: 3,371
* Graduate <Master>: 1,159
<Doctor>: 271
3. Number of Faculty Members : 348
* Professors: 135
* Associate Professors: 123
* Lecturers: 4
* Assistant Professors: 42
* Special Faculty Members: 44

4. Number of Administration and Technical Staffs: 199

e : mu$ I T g

1. Introduction (5/8) VLSI Lab

T ron g -T h uc H 0an g N ';E?%' Adachi m

Musashino 2 E_L[: \
ERFD. Shinjuku Ichikawa . Funabashi

Assistant Professor o HE e S
hoangtt@uec.ac.|p W i A
W1-507

ey
N %"(Shlnagawa

DDJ”E ‘

“kawasakl -
UEC | IIlll"ﬁFﬁ

East

Campus

Cong-Kha Pham
Professor

phamck@uec.ac.|p N e [570
est Gate © 155] ‘g
W8'214 — West et [l eS| oz TRt [East Gate

To Hachioji

Main Gate To Shinjuku

To Chofu Station

r7
é &73& -
100th Campus 8

mailto:hoangtt@uec.ac.jp
mailto:phamck@uec.ac.jp

-

7\ _____ B "

= / \ AT = !
71 '\ - & &

,,,\([E \NS £ |
V\] N &3 8

":; = 1l < = o = E
e - '. - . N E
(S
¥

SERV SoC

I

]

B

EN =
-

= 5

...... e

,A.._..
adENER

T oo el o s e

NI TITIT IS J;.ITJ_J 4 'Ll.ill L .
e ‘slel - ')
APCECET ettt e (L (TR &, wn

REES e b

f —

1. Introduction (7/8) VLSI Lab

Member
(as in Oct. 2023)
* Ph.D. students:
« Master students:
« Bachelor students:
« Researcher:

RN B O

Total:

From
* Vietham:
e Japan:
* China:

o1

1. Introduction (8/8) VLSI Lab

Core research Very-Large Scale Integrated circuit RISC-V
Cybersecurity Cryptography
Cryptosystem

Trusted Platform Module
Trusted Execution
Environment

Side-Channel Attack

Power Analysis Attack
Spectre attack

New Family

Post-Quantum Cryptography
Light-Weight Cryptography

Security IP

True Random Number
Generator

Physical Unclonable
Function

One-Time Programmable

New Standard

Cipher: ChaCha20,
Poly1305, AEAD, HMAC
Hash: SHA3, SHAKE
Pair-key: ECDSA, EdDSA

Internet of Things

Ultra-Low Power
Micro-controller

Others

Big Data

Frequent Item Counter
Text Search Processor

Digital Signal Processing

COordinate Rotation
Dlgital Computer

Discrete Cosine Transform
Fast Fourier Transform

11

—

UEL

| s BlEA ICIT2023

_l-ﬂ IC IT The 2nd International Conference on Intelligence of Things

Qutline

2. TPMand TEE

12

2. TPM & TEE (1/8) Cybersecurity overview

Power and EM Analysis Attacks

Branch Prediction

Timing Channels

Intra-core Side-channel

Detection Techniques

Lightweight Crypto Symmetric/Asymmetric
SIKE Elliptic Curves
TRNG DICE

Side-channel Prevention

Cryptographic Primitives

Tagged Memory

Memory Isolation

Reduce Attack Surface
SMPC CFI
Cryptography Side-channel Resist

Memory Encryption and Authentication

ISA Security Extensions

Memory Protection

Covert Channels

Physical Access

Logic-locking

EM Fault Injection

Program Obfuscator and Churn Units

RTL Bugs

Hardware Trojans

Memory Protection

Crypto Engines

Hardware and Physical Security

Hardware-assisted Security Units

RISC-V Hardware and Architecture Security

Link

Cybersecurity
IS a huge field
of research.

Today we

focus on
cryptosystem.

13

https://arxiv.org/pdf/2107.04175.pdf

2. TPM & TEE (2/8) TPM & TEE

TPM = Trusted Platform Module TEE = Trusted Execution Environment
TPM is for the authentication problem in a * TEE is the next step after TPM.
computer system. « TPMis for a trusted hardware; TEE is for a
The main feature Is remote attestation: a trusted Operating System (OS)
verifier can trust that the platform is “clean” * TEE needs TPM for the Root-of-Trust (RoT).
(i.e., its vital data is safe and its critical Based on the RoT, the Chain-of-Trust (CoT)
software are not tampered). IS developed, thus creating TEE.
Based on TPM, other applications of REE TEE

confidentiality, integrity, availability, etc.,
can be developed.

- N [
App. | [App.

(Operating V111 Trusted

QSystem (OS) J)\\ OS/Driver by

, N
' Enc.] [Enc. |

EnErator

enerator

Fas.
' Flatorm Configuration

Registers (PCR]

TPM [[Root-of—Trust] [HW Primitives]}
Hardware

14

2. TPM & TEE (3/8) How TEE works?

Trusted Execution Environment (TEE) provides:

1. Integrity: the code and data cannot be tampered.
2. Confidentiality: the application’s content cannot be read.
3. Attestation: proof to a remote party that the system is safe.
Secure (trusted) vs. non-secure (c) (1 Y |
(untrusted) worlds. ‘App’] [App‘;""""’;Enc'] [Enc‘;
Barrier enforcer by: software AND i Operating || || Trusted r Software stack
hardware. | System (OS) | OS/Driver |
All TEEs need some sort of A S A

hardware-assisted modules: Root-of-
Trust (RoT) and primitives.

| Root-of-Trust | [HW Primitives | } Hardware-assisted

HW primitives (examples): cache flushing, cache partitioning, memory isolation, memory encryption,
keys management, bus access controller, enclave encryption, and so on.

15

2. TPM & TEE (4/8) Several TEE examples

Intel Core(s)

Machine code

(App] (App) | Appj\

: Operating System (OS)

Intel SGX

K:MMU | [PRM)

Intel SGX: aiming
for conventional PCs

* Most closed-source
TEEs are fine-tuned
for their specific
Processors.

were proposed:

} H/S-mode different set goals,

} M-mode different resources,

and different

developing mindsets.

ARM Processor(s)

(App] L_App

[Enclavej\

[Monitor

: Operating System (OS)]

Trusted Firmware (TF)

[Castie J [MMUJ [GlCJ [TZPC

N\

J

&controller

ARM TrustZone

AMD Secure Processor(s)

/VMI VM2 T\

' (App] (App] '(Capp) (App) }U-mode

Operating Operating l
[Systern (OS)} [System (OS) S-mode

Hypervisor } H-mode
SEV Firmware }M-mode

@S Engine] [Key Managemey

AMD SEV

AMD SEV: aiming for
server’s cloud computing

} U-mode
} H/S-mode
} M-mode

ARM TrustZone: aiming
for smartphones/embedded-
systems 16

2. TPM & TEE (5/8) Several TEE examples

RISC-V Processor(s)

RISC-V Processor(s)
7 B Sanctum: (\
; App | App J|(LApp }U-mode similar 'App | [App | [Enclave | | Enclave | }U-mode
:DI‘IVGI‘S] (Drivers | | | Drivers | approach ' Dt e nOs) }H e st
MultiZone TEE W } M-mode with Intel . —— w
SGX. but for Security Monitor (SM) | }M-mode
| L1Cache | | PMP] RISC-V (
L1 Cache | ([MMU | [TLB |
N , , & Processors _ Y,
Hex-Five MultiZone
Sanctum

MultiZone:
lightweight TEE, RISC-V P .
rﬂulti_pgrposes p- dosai ~ TIMBER-V: similar

aiming for | APPJ [APPJ [App J [APP }U'mOde approach with Intel

embedded/IoT) . SGX, but uses strong
applications Operating System (OS) }S'mode hardware enforcers
| Machine Code | }M—mode based on “Tag’,'l D
across the entire system
\ (MPU] | Tag Engine /

TIMBER-V

17

2. TPM & TEE (6/8) Several TEE examples

RISC-V Processor(s)

Gpp] (App_

i Operating)
| System (OS) |

r

4) { x
| Enclave ||| Enclave |

3 B (:)

Eyrie Eyrie
| Runtime) | { Runtime)

Security Monitor (SM)

\:Ll Cache | | MMU || TLB || PMP)

Keystone

} U-mode

} S-mode

} M-mode

but a modular TEE framework (try its
best to be hardware-agnostic)

Keystone: is not a specific type of TEE,

RISC-V Processor(s)

() (i) | (D)
%
f Operating] | Runtime | {[Runtime |
L System (OS) Enclave Enclave |
| Enclave (SM)J Firmware
| Enclave Execution (SP1) | { Cache

Qus Access Control (SP2)]

Partitioning (SPy

CURE

} U-mode

} S-mode

} M-mode

CURE: a complete opposite with Keystone, this
TEE model requires a total hardware modification
across every architectural level (but provides

strong isolation with multiple types of enclaves)

18

2. TPM & TEE (7/8) TEE comparison

TABLE 2.1: TEE implementations comparison regarding the
security-related features; ®, ©, and O rank the performance
from best/supported to worst/not-supported, respectively.

 Various implementations for

Intel ARM | AMD | RISC-V various purposes and applications:
éggggggggggggggg Q RISC-V: with the advantage
Eg%%§aﬁg§%%§§§§2 of open-source — fast to adapt

BeERogsd BSRgil=s and can be fine-tuned to any

) O T TN — — = —_— -
5 S (BT SE o requirements.
pen-source OO0 @ OO e OO0 0|0Ce e e O
Enclave User-space 0 00 OO O0O0OOOI0Oee O o J ARM alming for SCA
type Kernelspace |0 O O O|/0 0 0 0|0 @ @@ OO @ @ resilience, mostly for portable
Adversar Software ® 0 060600606 0O 00 060 0 00 hand-held devices.
Y Physical @@ @e@O0Oe@e@C|j0ceeeOeee | tpical solut
scp Cachebased (00 0O O[O0 0 €[OO C 000 @@ 4 Intel & AMD: typical solution
resilience Ctrl-channel |[O O O O|O @ O O|O O O|l® ®@ O @ © for generic PC and data center;
DMA-based |0 O O O/0e @ ® |0 0 0O/ O @ O @ . -
Secure enclave-to-peripheral [O O O O|© © © ©|O0 O O|/®@ O O O ® aiming for heavy workload in
Small trusted firmware| @ O O ©|O © O O|®@ @ @ © © ® © © those systems.
Hardware modification O @ @ @€ O @ @ € (O O O|®@ O O @ O
Resource management O © © O|® O ®© ©|® © € O O © © ©
Wide-range applications O © © © | © © © ¢/ ® @ € O © © © ©
High expressiveness O @ @ ©|® © © ©(® @ € O © @ © ©
Low porting efforts O @ @ ©|O © © ©|® @ @O © O ® O 19

2. TPM & TEE (8/8) Secure boot in TEE

Non-secure Secure Secure boot In TEE:
(REE) (TEE) « Root-of-Trust (RoT): the first verification at reset, the
App. | [Baclave | starting-point for CoT. This should be provided by TPM.
= : " « Chain-of-Trust (CoT): a series of signatures &
App.]l 5) ——]]\)\ certificates started from the RoT up to the Rich OS.
" RichOS | App. \> Enclave) S ;
: / : ecure boot should guarantee:
(48 RichOS | |(3)Trusted | | ‘P08 &sign.) . Al sensitive assets (code, trusted
bootloader J*— OS/drivers ;<\ — OS/drivers, hardware primitives) are
. >Tn.l Stec ng/d.rwers Installed and at the initial states (as
? Trusted | | A THSCEDIER J expected by designers).
bootloader J | “(Trusted bootloader] * EVERYTHING is signature
@ e (B prog. & sign. J checked, and EVERY sensitive data
" i , are immutable or held in isolation.

e

<
Processor + On-chip storage Off-chip storage 20

—

UEL

| s BlEA ICIT2023

_l-ﬂ IC IT The 2nd International Conference on Intelligence of Things

Qutline

3. Why RISC-V?

21

3. Why RISC-V? (1/12) RISC-V ISA

‘ Open-source RISC-V means open-source ISA, no more, no less. ‘

(some other common ISAs: 1386, amd64, ARM 32/64, AVR, MIPS, Niosll, etc.)
RISC-V Foundation: https://riscv.org/

P RISC
e Official released ISA specification

e Many cores, SoCs, & software are available for free
e Developers can reuse each other designs & tools
— significantly reducing R&D time and effort

RISC-V Exchange: Available Software

:,g.gc ‘ o License free: e RISC-V ISA
e RISC-V toolchain

RISC-V Exchange: Cores & SoCs _
License depends on authors/developers:

e RISC-V processors
e RISC-V software applications
e RISC-V-related products

3 : s riv.
Name & Supplier s Links s Capability spec s User spec

22

https://riscv.org/

3. Why RISC-V? (2/12) What is ISA?

ISA means Instruction Set Architecture.
It is the layer between software and hardware developers.

Software tools: assembler, compilers, debugger, linker, etc.

ISA: the interface between software & hardware architects

Processor: ALU, FPU, registers, CSRs, branch predictor, caches,

etc.
ISA has to define all these kinds of stuff:

1) How many instructions, and which is which?
2) In an instruction, what field means what?

3) Addressing & data-path (8/16/32/64/128-bit)?
4) What is supported and what is not?

5) etc.

15

Unused

9-bit Instruction

Opcode

Reg X

Reg Y

23

3. Why RISC-V? (3/12) CISC vs. RISC

CISC RISC
(Complex Instruction Set Computer) (Reduced Instruction Set Computer)
1) Emphasis on hardware 1) Emphasis on software
2) Multi-clock complex instructions 2) Single-clock simple instructions
3) Memory-to-memory mindset 3) Register-to-register mindset
4) Small code size, many cycles per instruction 4) Large code size, few cycles per instruction
5) Low Fmax due to complex design 5) High Fmax due to simple design
6) Most transistors are used for storing instructions 6) Most transistors are used for storing data
7) Less memory for storing data & program 7) More memory for storing data & program
RISC win CISC win Nowadays, almost all processors
Performance = time _ time/\cycle i:gtruction in the market are RISCs.
program cycle instruction program _
Economic reason: memory
RISC-V simply means RISC architecture version five price Is way down | | |

24

3. Why RISC-V? (4/12) RISC-V toolchain

RISC-V toolchain and its ecosystem

Applications (User’s) software on the top
Distribution | | Debian Busybox Gentoo OpenEmbedded | | OS file system
Compiler Clang/LLVM GCC Compiler
System library newlib glibc Standard libraries
OS kernel Proxy kernel Linux kernel OS kernel

Implementation || Rocket || BOOM ||| Spike || QEMU || Verilator || Angel || Hardware at the bottom

Hardware Simulation / Emulation

Top-down explanation:
User’s applications on the top are operated in an OS file system, which then
compiled by a compiler based on multiple standard libraries. After compiled, the
execution file is run on the OS kernel that manages the hardware at the bottom.

25

3. Why RISC-V? (5/12) RISC-V toolchain

Csource :> Compiler | Hookehald g RISC-V toolchain and its ecosystem

file e.g. arm-none-eabi-gcc
u : Applications
Distribution | | Debian Busybox Gentoo OpenEmbedded
“Object” file Compiler Clang/LLVM GCC
u System library newlib glibc
OS kernel Proxy kernel Linux kernel
sl <: 555‘ TE;F" Implementation || Rocket |[BOOM | [Spike] [QEMU | [Verilator |[Angel
cript file '

{] Hardware Simulation / Emulation

Three most important tools

Program file Debugger

og amnoneeabiede o GCC: (cross C compiler) makes a C code into

@ ____ 17 assemblycode

Progrmming uiiliy | | pemgamewitiy || © LD (linker) links standard libraries into the

e.g. openocd e.g. openocd

~ build; also links between multiple C files
R @ sl [~ « GDB: (debugger) debug the
Target system hardware hardware/simulator/emulator

26

Base

Extended instruction set: the rest

Extension Description

3. Why RISC-V? (6/12) RISC-V extension

‘ What makes RISC-V different: 1ts modular mindset ‘

(modular architecture helps fine-tune the
performance based on the developer’s needs)

Instruction set: Integer

Integer

Integer Multiplication and Division

M
A

Atomics

-

Single-Precision Floating Point

Double-Precision Floating Point

General Purpose = IMAFD

There are also a
lot more than just
IMAFDC :

D
G
C

16-bit Compressed Instructions

Non-Standard User-Level Extensions

Xext

Non-standard extension “ext”

The most common
extensions: IMAFDC
(also known as GC)

Base Version Status
RVWMO | 2.0 Ratified
RV 321 2.1 Ratified
RV641 2.1 Ratified
RV32E 1.9 Draft
RV128I | 1.7 Draft
Extension | Version Status
M 2.0 Ratified
A 2.1 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Counters | 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
o3 0.2 Draft
V 0.7 Draft
Zicsr 2.0 Ratified
Zifencei | 2.0 Ratified
Zam 0.1 Draft
Ztso 0.1 Frozen

27

3. Why RISC-V? (7/12) OS stack

To support an Operating System (OS), the ISA
has to support the OS stack or the M-/S-/U-mode.

RISC-V privileged
architecture:

Application

Level Name Abbr.
0 User/Application U
1 Supervisor S
Reserved
3 Machine M

Different scenarios of utilizing the OS stack:

Application| [Application
ABI ABI
OS

SEE

Application| [Application| |Application| |Application
ABI ABI ABI ABI
oS OS
SBI SBI

Hypervisor

HEE

Supported Combinations of Modes

Supported Levels

Modes

RISC-V ISA not only supports the OS stack,
but also provides a privileged architecture.

1
2
3

M
M, U
M,S, U

— Better security scheme by having the hardware recognize
each code’s mode level. (read more at: Link)

28

https://www.five-embeddev.com/riscv-isa-manual/latest/priv-intro.html#introduction

3. Why RISC-V? (8/12) CHISEL

Chisel is a library.
Chisel Program Scala is a language.

« Scala itself is a high-level object-oriented
programming language
— It 1s not designed for “hardware coding.”

l 1 l

« Chisel Is a library attached to Scala to
define a set of coding rules.
— It is designed for “hardware coding.”

C++ Code FPGA Verilog
@ * From Scala to Verilog:
Scala — Java —» FIRRTL — Verilog

G
15t arrow: Scala compiler named SBT

C++ Simulator FPGA Emulation GDS Layout 2"d arrow: executing Java
3" arrow: FIRRTL compiler

ASIC Verilog

29

3. Why RISC-V? (9/12) Summary

‘ RISC-V revolutionizes computer system design ‘

1. Modular at heart:
customizable ISA and customizable hardware
— fine-tune the system to your specific needs.

2. Open-source community:
license-free ISA, open cores and SoCs, open-source libraries, open-source software,
etc. — reuse other developers’ designs — save time and effort for R&D

3. CHISEL (Constructing Hardware In Scala Embedded Language):
a new way to “coding” hardware circuits. When compiled, it will generate a true RTL
Verilog code.
— a “meta-programming’’ language for hardware developers with parameters and sub-
designs that can be overridden or extended.

— easy to develop “object-oriented” hardware library for reuse purpose.
30

3. Why RISC-V? (10/12) Common libraries

‘ The common open RISC-V libraries that you can use ‘

Chipyard (contains many common and
frequently used open IPs, including RISC-V ryreees
processors and other peripherals such as e :
uart, spi, sd-card, etc.): e e mee s o B 0 o (CONEAINS MaANY

: : I p— common FPGA
https://github.com/ucb-bar/chipyard P premes Qo com | e | (R : .
erikdanie Merge pull request #158 froma... . + fofbofd on Dec 29,2020 T 473 commits Confl g u ratl OnS):

.github/workflows Cl: add a scala compilation check 2 years ago https : //q i th u b . CO m/S

fpga-shells

‘= README.md

microsemi newshells checkpoint 3 years ago
= gm
n src/main/scala Add utility function for IBUF_LOW_POWER 2 years ago I f I Ve/fp q a S h e I I S
-
H I rr vsre/nfmaci0g nfmac10g: fix a power-0 bug 4 years ago
xilinx refactor tcl code that wasn't executing correctly 2 years ago
[} .gitignore nitial commit for fpga-shells 5 years ago
. [} READMEmd improved clarity of documentation 3 years ago
C"" C h d F k () chipyard-ci-process |passing
I pya r ra mewo r 3 buildwake wake: use variable for package location 2 years ago
[wit-manifestjson bump sifive-blocks (#157) 2 years ago
@ Quick Links
README.md
* Stable Documentation: https://chipyard.readthedocs.io/
o User Question Forum: https://groups.google.com/forum/#!forum/chipyard
N S o ¢fpga-shells

* Bugs and Feature Requests: hitps://github.com/uch-bar/chipyard/issues
An FPGA shell is a Chisel module designed to wrap any SiFive core configuration. The

@ USing Chlpya rd goal of the fpga-shell system is to reduce the number of wrappers to have only one
for each physical device rather than one for every combination of physical device and

To get started using Chipyard, see the stable documentation on the Chipyard core configuration.

documentation site: https://chipyard.readthedocs.io/

@ What is Chipyard 31

https://github.com/ucb-bar/chipyard
https://github.com/sifive/fpga-shells
https://github.com/sifive/fpga-shells

3. Why RISC-V? (11/12) Common processors

‘ Some famous RISC-V processors ‘

Rocket is the most popular
among RISC-V processors:
https://github.com/chipsalliance/
rocket-chip
(it is an in-of-order processor)

‘= README.md

¢ Rocket Chip Generator g’ ElEmmETS

This repository contains the Rocket chip generator necessary to instantiate the RISC-V

Racket Core. For more information on Rocket Chip, please consult our technical report.

@ Table of Contents

e Quick instructions for those who want to dive directly into the details without
knowing exactly what's in the repository.

e What's in the Rocket chip generator repository?
* How should | use the Rocket chip generator?
o Using the cycle-accurate Verilator simulation
o Mapping a Rocket core down to an FPGA
o Pushing a Rocket core through the VLSI tools
e How can | parameterize my Rocket chip?
* Debugging with GDB
® Building Rocket Chip with an IDE

s Contributors

BOOM is an out-of-order processor that can

rival ARM:

https://github.com/riscv-boom/riscv-boom

BOOMv2 BOOMv1

BOOMv3

‘= README.md

me

e P s Lo
_r'|S§

[\,'|2|I! Branch.
predict panalty

| |wb
: |b|D5|DS|wb|

10-Fycle Branch
= l r||i:;||||'r! ot penalty
|fem|fe1:chl F |-| ecld |-I 55 | rd |exe-c| wh
[ee | |

GShare

IaslrrdlllthElDSlwbl

|1l::bd'l | fatch | fiatch |

SFB
U Recoder
BTE RAS
TAGE

-llss | d|||h|D$|D$|wb|

.-m

| |I|ﬁ-i:.-'.T|lt:rﬁl'll:; Ty
‘ g 158

¢ The Berkeley Out-of-Order RISC-V
Processor EXrl

32

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/riscv-boom/riscv-boom

3. Why RISC-V? (12/12) Common books

Two “must-have” books for RISC-V RISC-V books that often used Iin
developers, from beginners to experts universities for teaching

—_— : i K. o Digital Design and
Digital Design "% ~' Computer Architecture

with Chisel RISC-V Edition

THE HARDWARE/SOFTWARE INTERFACE

P, RISC-V EDITION

David Patterson
Andrew Waterman

v \
READER
=V
>N Architecture Atlas

s =

T ~ Martin Schoeber Rl

David Harris

33

—

UEL

o ey N ICIT2023
! H{E K=

_l-ﬂ IC IT The 2nd International Conference on Intelligence of Things

Th University of Electro-Communications

Outline

4. Proposed System

34

4. Proposed System (1/8) Hardware modification

‘ Proposed secure boot process with Root-of-Trust for TEE ‘

E g IBex core 2 E
....................................... ' sub-system !
E REE / TEE E E y Instruction cache E 1' -ROOt key
r | | [: installed at
: Rocket/BOOM processor(s) ! : I Isolated BUT (IBus) I i he ti
| Data cache Instruction cache i E Boot ROM PUF ROM/ OTP / Flasl’@ t € tlme
e e e ' manufactured.
System Bus (SBus) :
I 2. Hidden MCU
L2 cache
TileLink to AXI4 | | Memory Bus (MBus) Peripheral Bus (PBus) for the
l I o | I O |]
Fetacontrallar Tel nkto AX¥ I i [ePi0] [BootROM] | | [EC/Ed-DSA | [AES-GCM-128/256 ; flexible boot
DDR controller | : ['sp| mmc) | [UART | ' [sHA3-512 | [HMAC-SHA2 | [RSA-1024 | program
' [sP1 (Fiash) ' 1 [AEAD | [chacha20 | [Poly1305 | [TRNG | !
E Utility group E E Crypto-core group i

__

3. Hierarchy-bus: TEE processors cannot access RAM/ROMs in the isolated domain (BUT
the isolated core can access ALL) 3

The
proposed

(

(
i

4. Proposed System (2/8) Key scheme

v Not stored anywhere

,‘

O Not stored in chip, but available in public

Q OS-memory, public domain

,l On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain Q Off-chip SD-card, public domain

Compute off-chip Compute on-chip
keys
. A Manufacturer Root Key = Device/Chip I_%%g%i’ Program (K)
scheduling gega e - - o ol
(M) (R) (D) |lisisis)| (M-mode)

SCh €me RSA:gen EC:gen EC:gen TRNG+PUF ;:Lﬁ'debtch;:;n
2048b or l 256b l 256b L EC: after signed.
4096b oy T~ .. r:,,\ % seed”| EC:gen

{ Sk V1 Pr ! { Sp ! 256b
RSA:si > RSA:sign J\ » EC:sign] » EC:sign
s\
s 1 =B Ll
—_— e
X @_o 4 EC:sign
M('cn. R;cn. DCcn. KCcn.
. T ey =
/ \
\
[| prog.
\ 2 {
WP Load
S e Verify & sion
sBL & load ZSBL N FSBL BBL
- | N F J

Done offline

Done by isolated processor

Done by TEE processor(s)

36

https://doi.org/10.1109/ACCESS.2022.3169767

P

PR

4. Proposed System (3/8) Key scheme: root CA

\
() Not stored anywhere

O Not stored in chip, but available in public

O OS-memory, public domain

l\ :n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Oft-chip SD-card, public domain

Compute off-chip Compute on-chip
= _J e oo el
o= 4Lk Manufacturer Root Key Device/Chip eroi01| Program (K)
> M) \ (R) o BNy . (D) |lisistsl| (M-mode)

RSA:gen EC:gen EC:gen TRNG+PUF it
2048b or 256b l 256b 1 L EC: after signed.
4096b e~ . 2 seed | &8N

! Sk BH Pr ! { Sp ! 256b
RSA:sign | }\ » EC:sign " » EC:sign
’ ’_\ N Ll
, —
L = | \
v (V) ! G
) =0 4 EC:sign
S T
R(‘cn KCcn‘
ol
/ \
/ \
[y
I
\ 5
> /
R SICh: -4 i Load
S~-- Verify & sign & sign
sBL & load FSBL BBL
7N J \\ J
i g s i
Done offline Done by isolated processor Done by TEE processor(s)

Step-by-step

e Step 1l: The
manufacturer
plays the role of
root CA (public
key 1s well-known
& certificate is
self-signed)

37

4. Proposed System (4/8) Key scheme: developer cert.

O Not stored in chip, but available in public O OS-memory, public domain

P

-

-

~N

S .
o !ﬁ Manufacturer

RSA:gen
2048b or l
4096b 7

RSA.:

\
l\) Not stored anywhere

Compute oft-chip

Root Key

RSA:sign

l\ :n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Oft-chip SD-card, public domain

Compute on-chip

s ° : . L
Device/Chip |}§§g§g Program (K)
2 (D) (538888 (M-mode)

*Note: the Sk

256b

EC'.ge” TRNG+PUF should be clean
256b L E C.'gen after signed.
\ > /

\ 4

EC:sign EC:sign

seed 1
=

EC:sign

KCan

prog.
> sign.
& sig
ZSBL FSBL ° ° ™ BBL
VRN ¥ |
v s i
Done offline Done by isolated processor Done by TEE processor(s)

Step-by-step

e Step 2:
manufacturer
generate root SR &
PR also offline, and
then uses SM to sign
on the PR and secure
BootlLoader (sBL)

sBL is stored In the
same place with PR, the
Isolated ROM.

38

P

P

4. Proposed System (5/8) Key scheme: product cert.

\
l\) Not stored anywhere

O Not stored in chip, but available in public

Compute oft-chip

Compute on-chip

O OS-memory, public domain

l\ :n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Oft-chip SD-card, public domain

J

Q e ° . . -—I
g=bay Manufacturer Root Key : @ ¢ Device/Chip rﬁéﬁ% Program (K)
> (M) (R) # > (D) (8888] (-mode)
> *Note: the Sk
RSA:gen | | EC:ger TRNG+PUF should be clean
2048b or L : after signed.
4096b T~ e = EC:gen
{ Sk B P 256b
RSA. » RSA:sign | }\ EC:sign EC:sign
T -
L —
b \/-O,’ EC:sign
M(’cn. R:cn KCcn‘
,/ N
|' prog. prog.
- sign. > sign.
S~ & sign
sBL FSBL BBL
| ~ 7 > " I = v
Done offline Done by isolated processor Done by TEE processor(s)

Step-by-step

e Step 3: (still offline)
the manufacturer (or
the provider)
generates the pair SD
& PD.
Then have the root
secret key generates
the DcCert. and sign
the ZSBL.

39

P

-

4. Proposed System (6/8) Key scheme: updatable ZSBL

\
l\) Not stored anywhere

O Not stored in chip, but available in public

Compute oft-chip

Compute on-chip

Oos.

l\ :n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Off-chip SD-card, public domain

memory, public domain

Q e ° . . -j
=¢F5y Manufacturer Root Key # ® ~ Device/Chip @gﬁﬁg Program (K)
© (M) (R) 8% . (D) @%{% (M-mode)
4 *Note: the Sk
RSA:gen | | EC:ger TRNG+PUF should be clean
2048b or L. : after signed.
4096b > e = EC:gen
{ Se 1| Pe ! 256b
RSA:si > RSA:sign | l\ EC:sign EC:sign ! l
I, ,_\ \ L‘
L —
b \/-O,’ EC:sign
M(’cn. R;cn K(‘an
,/ N
II prog. prog.
- sign. > sign.
B il & sign
sBL FSBL BBL
| ~ 7 ~ 3 R v)
Done offline Done by isolated processor Done by TEE processor(s)

Here is the RoT

SD is stored in the
Isolated ROM.

ZSBL & PD could be
In a flash outside.
The very first task of
the isolated processor
IS:

o Verify the ZSBL
signature by
using the PR

— this allows future
updates on the ZSBL.

40

P

-

~N

“A
o= (I}

4. Proposed System (7/8) Key scheme: program cert.

\
l\) Not stored anywhere

Manufacturer
(M)

O Not stored in chip, but available in public

Compute oft-chip

Root Key
(R)

RSA:gen

2048b or
4096b

Device/Chip
(D)

o

EC:gen
256b 1
\

Compute on-chip

riozoxo I
010101
101010
OIOJ.OIJ

&010

TRNG+PUF

[

seed

EC:gen

O OS-memory, public domain

l\ :n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Oft-chip SD-card, public domain

Program (K)
(M-mode)

*Note: the Sk
should be clean
after signed.

QP

! Sk BB Pr ¢ ! Sp § 256b
RSA:si » RSA:sign | }\ o EC:sign " EC:sign
T N
[o= |
\ ! .
% =0l ¢ EC:sign
M(’cn. R(‘cn D(‘cn. KCan
> o =
/ \
\
Il prog. prog.
\ : § :
g S1E0. ” \‘> —
N\
S el Verify
sBL & load ZSBL
v J U e Y

Done offline

Done by isolated processor

Done by TEE processor(s)

Step-by-step
e Step 4: (now on-chip)
the isolated processor
executes the ZSBL
and:
o Use TRNG to
seed EC-genkey
& create the pair
of SK & PK

o Load the FSBL
(hash & sign) to
the public RAM.

o Wakes up the

TEE processors

41

Isolated domain

TEE domain

4. Proposed System (8/8) Detail boot flow

Executed in ZSBL (by isolated processor)
A

Executed in sBL (by isolated processor)
A

B

r

N

r

ROM ROM ROM ROM ROM ROM ROM
Isolated So So So So So So So
peripherals Keys [Pa Keys [Pel Keys [Pe Keys [Pa Keys [Ps Keys [Bg]| Keys [Pa]
TRNG TRNG TRNG TRNG TRNG TRNG TRNG
Isolated ZSBL sign. ZSBL [sign. ZSBL [sign. ZSBL [sign. ZSBL [sign. ZSBL [sign.
solate
memory | Froe Stack Stack Stack Stack Stack
(C:;;CM"’)’I’ Free Free Free Free Free Free
verify(ZSBL) verify(ZSBL) verify(ZSBL) verify(ZSBL) verify(ZSBL)
N UART UART UART UART UART UART UART
- SPI SPI SPI SPI SPI SPI SPI
Flash SHA-3 SHA-3 SHA-3 SHA-3 SHA-3 SHA-3 \ SHA-3
Peripherals { | Ed25519 Ed25519 \ Ed25519 Ed25519 Ed25519 Ed25519 Ed25519
\ TRNG TRNG TRNG TRNG TRNG TRNG TRNG
il SPI SPI SPl SPI SPl SPI SPl
SD-card Free Free Free
S S
OS memory Keys [Bg Keys [Bg Keys
DDR - Free Free Free Free
(DDR) FSBL FSBL FSBL
Free Free Free
Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7:
Copy ZSBL Prepare for Verify(ZSBL) Keygen & Hash(FSBL) Prepare for Sign(FSBL) &
& its sign. verify(ZSBL) copy FSBL sign(FSBL) wake up TEE

The detail boot flow
based on the proposed

key scheduling.

42

D.

Peripherals

ICIT2023

The 2nd International Conference on Intelligence of Things

Outline

ICIT

43

5. Peripherals (1/14) EC/Ed-DSA

Arithmetic and Logic Unit
Address Gl
Write enable -
. l L
Input data, _,: Sﬂfh:ﬁ Memory ‘—|\/4
configurations : ! N
I | [
I |
Result I L= | | Processing ||||=
| 11| element
| |
I |
Initial data - | 's,| Modular 1 |
i _1‘_ 1 | inversion
Iy
Initial |
et Enablo ALU controller
select
Working/idle DSA control signals
System controller DSA controller
1. Idle e EdDSA
2. Initialize. —| o ECDSA P-256
3. Start process DSA [¢ ECDSA P-384
4. Wait for finish | S€leCt| ¢ ECDSA P-521

Ecliptic Curve (EC) and
Edwards-curve (Ed)
Digital Signature Algorithm (DSA)

Support four curves: three of ECDSA
and one of EdDSA

Support 256-bit, 384-bit, and 512-bit
Support functions: gen-key, sign, and

verify

—

- 44

https://doi.org/10.1109/ACCESS.2023.3236406

TILELINK PERIPHERAL

BUS (PBUYS)

Register Router

5. Peripherals (2/14) AES-GCM

— —{ GCTR |

\Y
— 9%6b W >
Plain_t l
128b W - N
Key >
ADD len | AES
P 1bW >
& J
6b W Control
Cipher
D— 128b W - v
Read
-~ 1bR - .4 (i
AAD
- 128b R GHASH
Tag
g 128b R .-

Advanced Encryption Standard
(AES) with Galois/Counter Mode
(GCM)

e Support encryption and
decryption.
e Support 128-bit and 256-bit.

45

TILELINK PERIPHERAL BUS (PBUS)

Register router

5. Peripherals (3/14) SHA3

Padding module

SHA3-512
« Support 512-bit.

« The core was developed based on

an open-source project (link).

Padding
| t
64b R/W L Padder
Final size _
3b R/W Shifter
Input ready
(trigger)
1b RO/W1 E Buffer (576b)
Round calculation
XOR
Done First
1bR
Constant Round 1600b
Counter (1) (0,p, 10, X.) Register
512bR

46

https://opencores.org/projects/sha3

TILELINK PERIPHERAL

5. Peripherals (4/14) HMAC-SHA?2

Register Router e (" j din (a.b) B
S
7o W 27D ! Dual Port ot
en Params Hash-based Message Authentication
LW — down | eme Code (HMAC) with SHA?
el - & 4
N 64b W
2 Pad mode (~ \
5 bw [. + Two modes: HMAC-SHA2 or
§ W reaet | Controller | padding HECHIng Core SHA? only.
e_pkg “ « Support: 256-bit, 384-bit, and
> 1bW Message (N 512'b|t
ready Start .
i bR — Params SHA Core
y 64b R - Data
J
\ 4
. 8 cycles
Message - .
. th : Memory SHA? > Digest Load data Data expansion
ecret key . Core Initialize Data compression | Calc. digest
Pad F HMAC P Valid 8 cycles 11 cycle Load data
Link generator || Controller > Ready _ 16cycles ' 48/64 cycles Initialize
INn) o :

47

https://doi.org/10.1109/NEWCAS52662.2022.9842174

5. Peripherals (5/14) RSA

TILELINK PERIPHERAL

BUS (PBUS)

Register Router ‘ E ~SA1004
L cou -~ gEtNurmgltsSl\/l « « Minimize the area by
using less “big”’-
M L ump registers as much
64bW _:‘D‘ _‘_“'} possible
—— ! e Small tasks are done
| by primitives such as
i | getNumBits (number
64bR [‘{ e of meaning LSBs), +,
: N FSMfe
1024b ‘ ESM an_d < :
v Primitive functions
N < execute 32-bit at a
_‘_D~ 1 Fsws time
{ 64bW

1024b

48

—

C.
>

-
RN

L.
S

=
N

5. Peripherals (6/14) AEAD

Authenticated Encryption with Associated Data (AEAD) (link)
« Use ChaCha20 as a stream cipher and Poly1305 as a MAC.

Register Router

o)
Plaintext . :
512b W . Cipher | Cipher Text
2 —> Key ChaCha20 text [| Register
o —* 256bW — Nonce |nijt
g | ! It Counter Next)/ CipherText/
a O—_9%6bWw [0:255] |
o o Init AEAD
waor— 1bW
: (7)) Control
= J<—> 2b W/R
=@ AAD
w [128b'W Init Next Finish
- ;
= 512b R Clghngext Block Poly1305 kKey
egister MAC
«—| 128bR |« '

https://www.rfc-editor.org/rfc/rfc8439
https://doi.org/10.1109/ISOCC53507.2021.9614016
https://doi.org/10.3390/cryptography6020030

5. Peripherals (7/14) ChaCha20
ChaCha20

« A stream cipher that was standardized recently (link).

e Can work alone or team-up with Poly1305 to perform Authenticated Encryption with
Additional Data (AEAD).

256 Block Function - Column Round 9\
Key |7 e Initial regs A1 | |A2 | | A3 | A4 3
To (] >
%2 v B1|[B2] [B3|| [B2]]| B
Nonce —~—»| Little Operation regs § |
Endian ci] [c2ll [c3ll [ca|| SR
32 3
cnt - @P"‘@ D1 | [D2|| | D3|| [D4 o
Init Mult-Quarter Round Qu::'ter Qui:ter Qul:ter g
Round || Round || Round =3
Next — Matrix Adder <« T' : _ %
y Al [A2] [A3] [24]] B
Serializer = = = = %
Y >12 [Cipher
=512 Y P ci||c2|[c3]||ca
Plain . Text
Text Crypto-Function (XOR) D11 D21 D31 [Da
J—> Ready _ . _
Diagonal Round

https://www.rfc-editor.org/rfc/rfc8439
https://doi.org/10.1109/ISOCC56007.2022.10031398

5. Peripherals (8/14) Poly1305

Key 250 4 PBlock
oo | 288 niial [_(hm.r) regs
5 State |
Block len _/ _/
. 1> _Ready
Init
1
Next ﬂ MulAcc
Finish v Y s
Fmal Block > MAC
‘ MulAcc sub-module
OP_A . 64 MulAcc
——> 64
OPB | cTRL . 64 /—> Accumulator A —F> SUM_A
Multiplier
OP C ___»]| State 32 5
7 —»1 Accumulator B —* SUM B
OP D —
64
, —»| Accumulator C —* SUM_C
Start FSM 64
;l—b Accumulator D —~ SUM_D
1
» READY

Poly1305

A Message Authentication
Code (MAC) that was
standardized recently
(link).

Can work alone or team-up
with ChaCha20 to perform
Authenticated Encryption
with Additional Data
(AEAD).

o1

https://www.rfc-editor.org/rfc/rfc8439

5. Peripherals (9/14) TRNG

oOur True Random Number Thr.e.e edge multimodal ROs — frequency
[Initial event | CO"apse

Generator (TRNG) is based on the i N-stages N-stages N-stages

from thr
frequency collapse phenomenon) do esttoee
of Ring Oscillators (ROs). J
stable two
a) Artix-7 Xilinx FPGA b) Ring oscillators c) 6-bit LUT edges
| X[x| Dl x ;
X[NJ| x| x '
i X[x [P[] X T T Initial event Before Collapse event Collapse event
i : :1 i LUTS || LuUTS Fi | “ompare Capture Stage
X DIl x || x g S 3 Lcoum[a]
Higai ABDE S, The proposed &= = [comr= | 5
x [| NJ| x || x — Init value TRNG R | =
i : : :: System based .i — PFD Rgrlrigcm False Event Detector
L _ _ on multimodal =& b q- e Ol
The idea can be implemented in FPGA. o
ROS — D o R out
. bRQ . 2blt':thlft Qf
- register
Link T : -

REF

https://doi.org/10.1109/ACCESS.2021.3099534

5. Peripherals (10/14) TRNG

Waveform of TRNG signals

2.5X2.5-mm2 —tRe
ROHM180nm ! \ |
on 2021/02 | @ 0 @ e
% : | SaII pulse | [Lostpulse | A vaid
The wanted 1
waveform: %
0 50 1OQI_ ime [nsjl 50 200 250
3 Edges Multi-Modal RO (RO RNG)
N-stages N-stages N-stages
| Proposed: ‘Eﬁ%—WQ}-Wx?——W =
1 Edge 2 Edge 3 EI&I:;
The proposed design passed (link): Fro ru = 1/(t * N-stages)
Conventional RO (RO REF)
e NIST SP800-90B & SP800-22 2 N-stages
. AIS31 & AIS20 | Conventional: \&P—DFD*D-’-W%W <
* PVT healthy test REF
I Frorer= 1/(5 * 2N-stages)

https://doi.org/10.1109/ACCESS.2022.3167690

5. Peripherals (11/14) PUF In VLSI

Physical Unclonable Function (PUF) is a physical
“object” that serves as a unique identifier for each device,

although the implementation is the same for all devices.

PUF architecture based on RO,
multimodal RO, and latches:

Passed the intra/inter-die tests:

—
o
o

Intra-die Inter-die
oc=0.2 g=22

Number of Samples
N o
o o

]
o

d

q

0

5 10 15 20 25 30 35 40 45 50 55

Hamming distance [%]

RO

Courter A

PUF Controller

Race Arbite

Counter B

il

7

LI L

T,=<T,

Example: fingerprints.
Everybody has a fingerprint, but
no two fingerprints are alike.

Multi-modal RO

Latch

Enable

Jout | :
Frisguency Counter |0

J@ Frequency
Collapse

Balanced Latch

Unbalanced Latch

VDD

TRNG
Application

g
o
"
I
D
0
2

=
2

VDD

Vo V]

VDD

<
(=]
S}

PUF
O Application

W
o0

The main
mechanism 1s based
on the metastability
of latches.

Link

- o4

https://doi.org/10.3390/fi14100298

5. Peripherals (12/14) PUF in FPGA

Conventional RO-based PUF:

D> D>

RO WH |

D>

D> D>

Challenge [k-1:0]

Counter
top

Jojesedwo)

Counter
bottom

5-stage Feedforward RO (FRO):

- Principal

- FeedForward
Path

Path

V

Response

0.08 }
0.07 }
-
£ 0.06 |
2 005}
€ 004}
.
B 003}
0.02 }
0.01 }

0

Passed the

Intra/inter-die tests:

Uniformity

M =16.84

oc=4.52 |1

A

b

0

5 10

15
Bits

20 25 30

Proposed FRO-based PUF in FPGA:

[FeedForward RO _|

W Principal Path
M FeedForward Path

-

Enable D\F
ED D>

P~

L’#’_

\4

Probability

Probability

037

o 9
N o

015
017
0.05F

0.08 F
0.07
0.06
0.05
0.04 F
0.03 F
0.02
0.01 F

Intra HD

M =4.08

c=1.14

10

15
Bits

20

25

30

Inter HD

H = 16.07

c0=4.44

15
Bits

20

25

30

55

https://doi.org/10.1109/ISOCC56007.2022.10031300

5. Peripherals (13/14) NVRAM

Typical NVRAM design in standard CMOS technology

=5

Blocking Oxide
© A FloatingGate(FG) © ©
Tunnel Oxide
N+ IFP N+ P+
D »| s B
Tunneling @ Poly-Si Tunneling
(- (-] SmgleFIoatingGate(SFG) o @ Tunneling @
P+ P+ N+ P+ I P+ N+ N+ [P+ v [P+
D |runneiing | s B D |—=l s B B S D
N-Well CT N-Well P R N-Well CC
P-substrate
= Stable = = Unstable =
Simplified f mose Cfn ofp mese off
. —_ —_
operating T
© SIS
modes: |© e Ch "_e_u_

—

Loyl

5

Proposed NVRAM design
without using special layer(s)

CG

TG

CGB

[
lell.rler-I—rl VDD Ij"rlMllLrlM
SFG@ealr{?l"'U"ﬁH"‘%G

M, ENA
M, _:"“’E‘II:_ Mo
outB M+ =HhAE-M. our
D~ M., IH EI M., -
NVT:_II\:I bit - |:| A;i?ﬁ’?er

56

https://doi.org/10.1109/ISCAS46773.2023.10181362

5. Peripherals (14/14) NVRAM

The physical phenomenon of the proposed NVRAM cell ‘

0.8 v ' ' 0.16
0 Stabie 2ore | Stable zone (NVRAM) | i Py
(NVRAWM) reamies] | ©V; Calibration|
0.4 Failed Health test || 4 0.08
E Cell A Health test Passed E
— 0.2 | Failed L 0.04 -
> >
E o Metastable zone Vv 0 £
© (TRNG & PUF) Unstable ©
E’ 02 4-0.04 g
o Cell o
0.4 L B Metastable zone 0.08
(TRNG & PUF) Vunstabl
06 0.12
| Stable zone (NVRAM) |
0.8 A A A 0.16
0 . 10 0 5 10, 15
Time [years] Time [minutes]
—.—- T=—1-O[°C] . i ; . .
0.994 +-|T—i1§55'E:g h 140
e | 1 2.l [Intra-die Inter-die
PVT E 0992 b M——é\ﬁ . _E'
- . 100
tests: £°7'| ' 1 & b =0.42 u = 48.12
" E oo} {1 ©G= c=0.1 c=1.83
(=] | .
;-E' 0.989 ; L g 60
g 0ooss o €
3 5 40
S 0987 . Z
0.986 20
0.985 3'0 3'1 3'2 3'3 3'4 3'5 3-5 00 5 70 15 20 25 30 35 40 45 50
' ‘ “ v ' ' Hamming distance [%)]

The chip passed intra/inter-
die tests with PVT variations.

: Sense i
= Amplifier |
H2L Level

= Shifter .
L2H Level :

- Shifter ||

LB
.l
L
.V
»
L
L
LI
L
L
u
L
u
L
n
L
u
n
,
u
L]
]
)
| B
]
Lk

. I B REEFTYTER :
od B el BRARDER —

T LT T L

Die tests at

: typical condition
| of 3.3V@25°C

https://doi.org/10.1109/ISCAS46773.2023.10181362

0.

== }':\% §
EH X118 |5
The University of Electro-Co

Result

@
CIT ICIT2023

The 2nd International Conference on Intelligence of Things

Outline

58

6. Result (1/14) FPGA implementation

‘ The proposed design was tested with the VC707 FPGA board. ‘

E Isolated E
e, ' sub-system 'Be’f G :
| REE / TEE | Instruction cache i
l Rocket/BOOM processor(s) i Isolated Bus (IBus) E
| DARCACHo nSHCHon cache | RAM | [BootROM | [PUF | [ROM/OTP/Flash |

System Bus (SBus)
|
L2 cache
TileLink to AXI4 Memory Bus (MBus) Peripheral Bus (PBus)
R | R |
PCle controller TileLink to AXi4 P10 | [Boot ROM EC/Ed-DSA | [AES-GCM-128/256
DDR controller SHA3-512 | | HMAC-SHA2 | | RSA-1024

SPI (MMC) | | UART

SPI (Flash)

Utility group

AEAD | | ChaCha20

Poly1305 | | TRNG

Crypto-core group

--

6. Result (2/14) FPGA implementation

‘ SoC resources utilization pie chart: Implementation on VC707 FPGA ‘

LUT Ultilization Register Utilization
m Rocket: RV32IMAC m Rocket: RV32IMAC
m |IBex 4.55% m |Bex
) 6.920, B RSA1024 m RSA1024
' = HMAC-SHAZ? = HMAC-SHAZ?
m AES-GCM 5.02% m AES-GCM
N~ = ChaCha20 = ChaCha20
. 199% 4 poly1305 18.41% Poly1305
39.69% 2.35% wm AEAD AEAD
2.17% EC/Ed-DSA EC/Ed-DSA

1.08% SHA3-512 6.89%
4.82% w the rest 3.07%./

2.16% SHA3-512

2.229% ~1.43% mthe rest

*Note: “the rest” means all the buses, TRNG,

and utility-group peripherals such as GPIO, SPI, boot ROM, etc.
60

TEE-HW FSBL:

sing ZS8BL DTB
50000000
Got NUM CORES: 1
: 1000000

Got TL_CLK:

Got TIMEBASE

6. Result (3/14) Self-test software

‘ Initial test and drivers for using crypto-cores were developed ‘

2022-04-

Welcome to TEE-HW Bootloader

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
ENTER

Press
Press

W N N

Py

‘e
‘s
‘g’
‘g
‘3
‘b
‘g’
‘o
‘g
‘B

-

| 81ff8200 <-

run
run
run
run
run
run
run
run
run
run
run
run
run
run
run

ALL
SHA-3
ED25519
AES

RNG
CHACHA
POLY
CP_AEAD
AES GCM
HMAC SHA
RSA

hardware
hardware
hardware
hardware
hardware
hardware
hardware
hardware
hardware
hardware
hardware

DHRYSTONE test

AES GCM

to boot Linux

Booting payload

1MB hardware test
HMACSHAS12 1MB hardware test
ED\EC hardware tes

1

8-13:55:24-22000a4

Tests at FSBL (M-mode)
before boot into Linux

tests
test
test
test
test
test
test
test
test
test
test

Drivers and tests (U-mode) after boot into Linux

s

aes gcm _driver.ko rsa _driver.ko
testdriver.ko
testdriver write.ko

chacha _driver.ko
chacha poly driver.ko
hmac_sha driver.ko

keystone-driver.ko
poly driver.ko

edec_driver.ko

tls client.o

tls server.o

0001ff82kB / 00020000kB

61

6. Result (4/14) Self-test software

HMAC-SHA?2 AES-GCM

Begin AES GSM hardware test:
f1bd938f54b2f392f7b4e811544c65€9 AEAD (ChaCha+Pon)

65c0885d54ed4b2c50732032abd953a4)
df89de58ee61514ed075F8e590ac3d2e Software: Hardware:
38d7489e28742abcae67242212a4b33d

e2006eb42f5277022d9b19925bc419d7
Time: O0s O 92 a592666c925fe2ef718eb4e308efeaa7 Cipher:
el o3 c5273b394118860a5be2a97f56ab7836

d31a8d34648e60db7b86afbc53ef7ec2
Hardware 384: 5ca597cdbb3edb8d1a1151ea@af7b436 ad4aded51296e08fea9e2b5a736ee62d6
3dbea45e8ca9671282fafb69da92728b
9d72af3c8cf178c12e6069bdfd645b09 1a71dePa9e060b2905d6a5b67ecd3b36
©232245e3850d3c595def9f13670511b 92ddbd7f2d778b8c9803aee328091b58
7¢3472789dfae890c52c3d4d88891148 Time: Os Oms 397us fab324e4fad675945585808b4831d7bc
3ff4defO8e4b7a9de576d26586cec64b
Time: 0s 6ms 86us Hardware: 6116000000000000000OEEEEEEOOOOOO

e2006eb42f5277022d9b19925bc419d7 MAC:
a592666c925fe2ef718eb4e308efeaa7

c5273b394118860a5be2a97f56ab7836 13e10b594f09e26a7e902ecbdP600691

Hardware 256:

61cc4afOePeb6c428fdc1b4e890777c7cC
e2faddacf7a21ce31028721aebdcbc2d 5ca597cdbb3edb8d1a1151eaPaf7b436 TAme: B Ohs dAaue

Time: 0s Oms 83us 12.1x faster

Time: 0s Oms 53us
6.16Xx to 7.62 X faster 7 49% faster

6. Result (5/14) VLSI |

To boot rich OS (such as Linux), e, <=

a big memory space is required.

— An FPGA will be used for
DDR and PCle hard IPs.

L PR e i

mple

— Off-chip DDR is needed. R~ ‘

--

i Isolated

T B ' sub-system [Bex core i
: REE / TEE | : | Instruction cache | i
| ! i | !
: Rocket/BOOM processor(s) H E ; I I Isolated BUT (IBus) I E
i | L_Datacache | | Instruction cache | [(| f RAM | [BootRom | [PUF | [Rom/OTP /Fiash | !
- y— T SO0 % . Spe——— < —— L T ————— '
System Bus (SBus)
| L2 cache |
TileLink to AXI4 Memory Bus (MBus) Peripheral Bus (PBus)

| S— | FO— U ——— RO

Ttk o AX® I [P0] [BootRoM] ! ! [EC/Ed-DSA | [AES-GCM-1281256 5

SerDes SerDes \['spi vmc) | [UART | ' [sHA3512 | [HMAC-SHA2 | [RsA-1024 | |

' ["SPI (Flash ' 1 [AEAD | [Chachazo | [Poly1305 | [TRNG | !

SerDes | FPGA [serDes ; (—) P! 2 :

T T ! Utility group L Crypto-core group :

PCle controller DDR controller ||?—o«— ————— O

mentation

Sl §

.....

PCB W&

for =B
other ' 8- ik

utilities =

FPGA for using DDR memory
63

6. Result (6/14) VLSI implementation

s = |64-bit dual Rocket | e 1] 32-bit Rocket-
¢ = lwith crypto-cores | o e Boom with

‘| and secure boot I —— crypto-cores and

5.0%5.0-mm2 ‘ ' secure boot

¥ JROHM180nm on 5.0%5.0-mm2
= 12021/02 ROHM-180nm
e 4| on 2021/06

ccccc

. — = | 64-bit dual
64-bit Rocket- | HEHRGES Seais S 1l Rocket with

(GPIO, UART, £

Boom with e = 8 || crypto-cores

crypto-cores == " = |
P) & secure boot | [= 15.0x5.0-mm2
| ROHM-180nm

| 4 , 5.0%7.5-mm2 e |
_: : (RV64GC) : (RV64GC) EEEE = On 2021/ 09
| [l o g ROHM180nm ' e

on 2021/06

64

6. Result (7/14) VLSI implementation

Y 5.0x5.0-mm2 ROHM-180nm on 2022/02

' Core Rocket (x1)

AE

ISA RV32IMAC

Cache $l =16KB and $D = 16KB

Ed/EC-DSA HMAC-SHA2

Crypto-cores: TRNG, RSA, AES-GCM, SHAS3,
HMAC-SHA2, ChaCha20, Poly1305, AEAD, and
o SR | EC/Ed-DSA

(buses, TRNG, | ‘ #G ate 1 , 535,403

peripherals, etc.)

o I #Cell 466,882

Area (um?) 20,799,437

Density 71.43%

Fmax (MHz) 1

Rocket Frontend

#MOSFET 7,982,582

u
L
—
-
u
"
-
-
L]
o
|
o

|
'm
1
-

I
B
—
-
-
u
.
"
u
H
n
l
o
H
u

R - | 32-bit Rocket with TLS-1.3
——— e _" — ;":i_ | Cl’yptO-COI‘ES and secure boot 65

O)

6. Result (8/14) VLSI implementation

‘ SoC resources utilization pie chart: Implementation on ROHM180nm ‘

Area Utilization Power Utilization

m RocketTile 2.68%- m RocketTile

m EC/Ed-DSA 2.79% m EC/Ed-DSA

m RSA-1024 3.82% m RSA-1024

= ChaCha-Poly 3.46% = ChaCha-Poly

O SHA3_-512 - O SHA3_—512

m |bexTile m |bexTile

= AES-GCM = AES-GCM
HMAC-SHA?2 HMAC-SHA?2
ChaCha20 ChaCha20
Poly1305 6.00% Poly1305

w the rest w the rest

*Note: “the rest” means all the buses, TRNG,

and utility-group peripherals such as GPIO, SPI, boot ROM, etc.
66

6. Result (9/14) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Design Registers LUTs
Overhead (+%) | Overhead (+%)
This Baseline: Dual-Rocket 24,624 74,258
work + IBex! +3,253 (13.21%) | +9,793 (13.19%)
(2021) + crypto-cores’ +14,103 (52.27%) | +19,883 (26.78%)
+ IBex! + crypto-cores® | +17,356 (70.48%) | +29,676 (39.96%)
ITUS Baseline: Dual-Rocket 24,624 74,258
[11,12] + CAU +6,722 (27.30%) | +27,170 (36.59%)
(20’19) + KMU +3,344 (13.58%) | +29,529 (39.77%)
+ CAU + KMU +10,066 (40.88%) | +56,699 (76.35%)
Baseline: Single-lowRISC 55,443
HEC[Tg(])R'V with RISCY N/A +8,205 (14.80%)
(2021) with Remus +11,581 (20.89%)

with Frankenstein

+13,303 (23.99%)

'Including the isolated sub-system.
Including SHA-3, AES, Ed25519, and TRNG.

67

6. Result (10/14) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Design Registers LUTs
Overhead (+%) | Overhead (+%)
Baseline: Dual-Rocket 24 624 74 258
+ IBex! +3,253 (13.21%) | +9,793 (13.19%)
T pto-cores2 +14,103 (52.27%) | +19,883 (26.78%)

§ ITUS: secure boot by all hardware modules.
This work: crypto-cores just for accelerating
the boot flow, not a hard requirement.

+ CAU + KMU 710,066 (40.88%) | +56,699 (76.35%)
Baseline: Single-lowRISC 55,443
HEC[Tg(])R'V with RISCY N/A +8,205 (14.80%)
o0a1) | With Remus +11,581 (20.89%)

with Frankenstein

+13,303 (23.99%)

YIncluding the isolated sub-system.
’Including SHA-3, AES, Ed25519, and TRNG.

68

Even including crypto-cores,
this work still smaller.

\ N

6. Result (11/14) Comparison

' with other secure-boot RISC-V-based TEE SoCs.

Sign

Registers
Overhead (+%)

LUTs
Overhead (+%)

WO

(202

ITUS
[11,12]
(2019)

HECTOR-V

[9]
(2021)

24 624

+ IBex!
+ IBex" + crypto-cores
paseline: Dual-Kocket
+ CAU

+ KMU

Baseline: Single-lowRISC
with RISCY

with Remus

+3,253 (13.21%)

+14,108 (02.27%) |
+17,356 (70.48%)
+6,722 (27.30%)
+3,344 (13.58%

+10,066 (40.88%

N/A

74 058
+9,793 (13.19%)

110,883 (26.78%0) |
+29,676 (39.96%)

4 ®

+27,170 (36.59%)
+29 529 (39.77%
55,443

+8,205 (14.80%)

+11,581 (20.89%)

with Frankenstein

+13,303 (23.99%)

'Including the isolated sub-system.
Including SHA-3, AES, Ed25519, and TRNG.

69

6. Result (12/14) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Design Registers LUTs
Overhead (+%) | Overhead (+%)
Baseline: Dual-Rocket 24,624 74,258
+ IBex! +3,253 (13.21%) | +9,793 (13.19%)

T p’to-cores2

HECTOR-V: uses TEE processors to boot,
+ 1Be crypto-cores

sl =] no crypto accelerators.
ITUS aserne. PUATRRRES | (they are not the same idea, but compared

2

[11,12] i Eﬁ% based on the secure boot’s hardware
(2019) 4 CAU + K\ requirements)
B soling ledowRiscl This work: use IBex to boot, could excluded
5 _ i the crypto-cores.
' RISCY
with Remus +11,581 (20.89%)
with Frankenstein +13,303 (23.99%)

'Including the isolated sub-system.

Including SHA-3, AES, Ed25519, and TRNG. .

6. Result (13/14) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Registers

LUTs

Design Overhead (+%) | Overhead (+%)
This Baseline: Dual-Rocket 24,624 74,258
work . . p—— -
(2021) + crypto-cores o1 () 27%) | +19,883 (26.787%
+ IBex! + crypto-cgue +17,356 (70.48%) | +29,676 (39.96%)
Baseline: Dugl#0cket 24,624 74,258
. , +6,722 (27.30%) | +27,170 (36.59%)
; + CAU + KM +10,066 (40.88%) | +56,699 (76.35%)
Baseline: lf'o;{ (T A/

HECTOR-V

[9]
(2021)

with RI5CY
with Remus

with Frankenstein

+8,205 (14.80%)
+11,581 (20.89%)
+13,303 (23.99%)

ncluaing tne isolated sub-system.
’Including SHA-3, AES, Ed25519, and TRNG.

71

6. Result (14/14) Comparison

TABLE 5.13: Comparison with recent security-driven RISC-V-
based SoCs, regarding the security and flexibility features; @,
O, and O rank the performance from best to worst, respectively.

CURE
18]

HECTOR-V
9]

WorldGuard
[10]

ITUS
[11,12]

This
work

Open-source

@

Secure boot
Flexible boot process

TEE & secure boot iso.
Exclusive TEE processor

Exclusive secure storage
Secure 1/0O paths
Crypto. accel.

SCA resilience
Hardware cost
High expressiveness
Low porting efforts

OEH N JON NOIVECON N0

ON BN HON N JI NON N MO

sEvE EViieAECGIICEON Nelie)

| NONOROI NON JON NON MO

e 0000 C0O00O0

Achieved:

1 Secure boot process
with RoT for TEE.

O Flexible boot flow.

O Complete isolation
between the boot
process and the TEE
domain.

O Has exclusive storage
for boot program
only.

 Cryptographic
accelerators are
available.

72

/.

Conclusion

ICIT2023

The 2nd International Conference on Intelligence of Things

Outline

ICIT

73

/. Conclusion (1/1) Summary

Key Achievements

TEE-HW with cryptographic accelerations: using the framework, custom hardware was
made for accelerating the TEE boot flow.

TEE-HW with isolated RoT: the heterogeneous architecture was proposed to isolate the
RoT from the TEE side. The manufacturer and root keys are stored at the time
manufactured. The bootloader program is flexible and can be updated.

Silicon-proof TEE-HW chips: ROHM-180nm chips were made for the TEE-HW with
Isolated RoT; and the measurements and tests were done.

FPGA and VLSI implementations: the proposed system can work on both FPGA and
VLSI. All the cryptographic primitives, such as TRNG and PUF, have their equivalent in
FPGA.

74

—

UEL

202
| e Ko ICIT2023

_lﬂ IC I T The 2nd International Conference on Intelligence of Things

ThU rsity of Electro-Commun

THANK YOU

2023/10/27

75

