
2023/10/27
1

Trong-Thuc Hoang and Cong-Kha Pham

University of Electro-Communications (UEC), Tokyo, Japan

RISC-V Trusted Platform Module (TPM) and

Trusted Execution Environment (TEE)

The 3rd Symposium on Computer Science

& Engineering (SCSE 2023)

Outline

2

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

Outline

3

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

4

1. Introduction (1/8) University

The University of

Electro-Communications

国立大学法人電気通信大学

5

1918 Established as “The Technical Institute for

 Wireless- Communications”

1949 Promoted to the National University status as

 “The University of Electro-Communications”

2004 Reformed as a National University Corporation

2013 Authorized as “The Enhancement of Research

 Universities”

2018 Observes its Centennial

History of UEC

1. Introduction (2/8) University

6

1. Introduction (3/8) University

Location of UEC Campus

JAPAN
TOKYO

Access

A convenient location

• 15 minutes to Shinjuku, a major business center

• 1 hour from Tokyo Airport by Airport Shuttle bus.

With beautiful suburban and historical surroundings

7

1. Introduction (4/8) University

UEC Statistics (as of May 1, 2023)

１．One Undergraduate and One Graduate Schools

•Undergraduate School of Informatics and Engineering

•Graduate School of Informatics and Engineering

２．Number of Students : 4,801 (305 international students)

• Undergraduate: 3,371

•Graduate <Master>: 1,159

<Doctor>: 271

３．Number of Faculty Members : 348

•Professors: 135

•Associate Professors: 123

•Lecturers: 4

•Assistant Professors: 42

•Special Faculty Members： 44

４．Number of Administration and Technical Staffs: 199

8

1. Introduction (5/8) VLSI Lab

Trong-Thuc Hoang

Assistant Professor

hoangtt@uec.ac.jp

W1-507

Cong-Kha Pham

Professor

phamck@uec.ac.jp

W8-214

UEC

mailto:hoangtt@uec.ac.jp
mailto:phamck@uec.ac.jp

9

1. Introduction (6/8) VLSI Lab

Very Large Scale Integrated circuit (VLSI) and RISC-V are our core research.

They serve as the foundation for others.

1. Introduction (7/8) VLSI Lab

Member

(as in Oct. 2023)

• Ph.D. students: 6

• Master students: 4

• Bachelor students: 2

• Researcher: 1

Total: 13

From

• Vietnam: 7

• Japan: 5

• China: 1

10

1. Introduction (8/8) VLSI Lab

Cryptosystem

• Trusted Platform Module

• Trusted Execution

Environment

Side-Channel Attack

• Power Analysis Attack

• Spectre attack
New Standard

• Cipher: ChaCha20,

Poly1305, AEAD, HMAC

• Hash: SHA3, SHAKE

• Pair-key: ECDSA, EdDSA

New Family

• Post-Quantum Cryptography

• Light-Weight Cryptography

Security IP

• True Random Number

Generator

• Physical Unclonable

Function

• One-Time Programmable

Cybersecurity
Cryptography

Internet of Things

Ultra-Low Power

Micro-controller

Digital Signal Processing

• COordinate Rotation

DIgital Computer

• Discrete Cosine Transform

• Fast Fourier Transform

Big Data

• Frequent Item Counter

• Text Search Processor

Others

Core research Very-Large Scale Integrated circuit RISC-V

11

Outline

12

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

2. TPM & TEE (1/8) Cybersecurity overview

Cybersecurity

is a huge field

of research.

Today we

focus on

cryptosystem.

Link
13

https://arxiv.org/pdf/2107.04175.pdf

2. TPM & TEE (2/8) TPM & TEE
TPM = Trusted Platform Module

• TPM is for the authentication problem in a

computer system.

• The main feature is remote attestation: a

verifier can trust that the platform is “clean”

(i.e., its vital data is safe and its critical

software are not tampered).

• Based on TPM, other applications of

confidentiality, integrity, availability, etc.,

can be developed.

TEE = Trusted Execution Environment

• TEE is the next step after TPM.

• TPM is for a trusted hardware; TEE is for a

trusted Operating System (OS)

• TEE needs TPM for the Root-of-Trust (RoT).

Based on the RoT, the Chain-of-Trust (CoT)

is developed, thus creating TEE.

TPM

14

2. TPM & TEE (3/8) How TEE works?

Trusted Execution Environment (TEE) provides:

A typical TEE setup:

• Secure (trusted) vs. non-secure

(untrusted) worlds.

• Barrier enforcer by: software AND

hardware.

• All TEEs need some sort of

hardware-assisted modules: Root-of-

Trust (RoT) and primitives.

1. Integrity: the code and data cannot be tampered.

2. Confidentiality: the application’s content cannot be read.

3. Attestation: proof to a remote party that the system is safe.

• HW primitives (examples): cache flushing, cache partitioning, memory isolation, memory encryption,

keys management, bus access controller, enclave encryption, and so on.

15

2. TPM & TEE (4/8) Several TEE examples

Intel SGX: aiming

for conventional PCs

ARM TrustZone: aiming

for smartphones/embedded-

systems

AMD SEV: aiming for

server’s cloud computing

• Many TEE models

were proposed:

different set goals,

different resources,

and different

developing mindsets.

• Most closed-source

TEEs are fine-tuned

for their specific

processors.
16

2. TPM & TEE (5/8) Several TEE examples

MultiZone:

lightweight TEE,

multi-purposes,

aiming for

embedded/IoT

applications

Sanctum:

similar

approach

with Intel

SGX, but for

RISC-V

processors

TIMBER-V: similar

approach with Intel

SGX, but uses strong

hardware enforcers

based on “Tag”-ID

across the entire system

17

2. TPM & TEE (6/8) Several TEE examples

Keystone: is not a specific type of TEE,

but a modular TEE framework (try its

best to be hardware-agnostic)
CURE: a complete opposite with Keystone, this

TEE model requires a total hardware modification

across every architectural level (but provides

strong isolation with multiple types of enclaves)

18

2. TPM & TEE (7/8) TEE comparison

19

• Various implementations for

various purposes and applications:

❑ RISC-V: with the advantage

of open-source → fast to adapt

and can be fine-tuned to any

requirements.

❑ ARM: aiming for SCA

resilience, mostly for portable

hand-held devices.

❑ Intel & AMD: typical solution

for generic PC and data center;

aiming for heavy workload in

those systems.

2. TPM & TEE (8/8) Secure boot in TEE

20

Secure boot in TEE:

● Root-of-Trust (RoT): the first verification at reset, the

starting-point for CoT. This should be provided by TPM.

● Chain-of-Trust (CoT): a series of signatures &

certificates started from the RoT up to the Rich OS.

Secure boot should guarantee:

• All sensitive assets (code, trusted

OS/drivers, hardware primitives) are

installed and at the initial states (as

expected by designers).

• EVERYTHING is signature

checked, and EVERY sensitive data

are immutable or held in isolation.

Outline

21

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

3. Why RISC-V? (1/12) RISC-V ISA

22

Open-source RISC-V means open-source ISA, no more, no less.

License free:

License depends on authors/developers:

● RISC-V ISA

● RISC-V toolchain

● RISC-V processors

● RISC-V software applications

● RISC-V-related products

(some other common ISAs: i386, amd64, ARM 32/64, AVR, MIPS, NiosII, etc.)

RISC-V Foundation: https://riscv.org/

● Official released ISA specification

● Many cores, SoCs, & software are available for free

● Developers can reuse each other designs & tools

→ significantly reducing R&D time and effort

https://riscv.org/

3. Why RISC-V? (2/12) What is ISA?

23

ISA: the interface between software & hardware architects

Software tools: assembler, compilers, debugger, linker, etc.

Processor: ALU, FPU, registers, CSRs, branch predictor, caches,

etc.

ISA means Instruction Set Architecture.

It is the layer between software and hardware developers.

Opcode Reg X Reg Y

8 6 5 3 2 0

Unused 9-bit Instruction

15 0
ISA has to define all these kinds of stuff:

1) How many instructions, and which is which?

2) In an instruction, what field means what?

3) Addressing & data-path (8/16/32/64/128-bit)?

4) What is supported and what is not?

5) etc.

3. Why RISC-V? (3/12) CISC vs. RISC

24

CISC

(Complex Instruction Set Computer)

1) Emphasis on hardware

2) Multi-clock complex instructions

3) Memory-to-memory mindset

4) Small code size, many cycles per instruction

5) Low Fmax due to complex design

6) Most transistors are used for storing instructions

7) Less memory for storing data & program

RISC

(Reduced Instruction Set Computer)

1) Emphasis on software

2) Single-clock simple instructions

3) Register-to-register mindset

4) Large code size, few cycles per instruction

5) High Fmax due to simple design

6) Most transistors are used for storing data

7) More memory for storing data & program

RISC-V simply means RISC architecture version five

Nowadays, almost all processors

in the market are RISCs.

RISC win CISC win

Economic reason: memory

price is way down ↓ ↓ ↓

3. Why RISC-V? (4/12) RISC-V toolchain

25

RISC-V toolchain and its ecosystem

Top-down explanation:

User’s applications on the top are operated in an OS file system, which then

compiled by a compiler based on multiple standard libraries. After compiled, the

execution file is run on the OS kernel that manages the hardware at the bottom.

(User’s) software on the top

OS file system

Compiler

Standard libraries

OS kernel

Hardware at the bottom

3. Why RISC-V? (5/12) RISC-V toolchain

26

RISC-V toolchain and its ecosystem

Three most important tools

• GCC: (cross C compiler) makes a C code into

assembly code

• LD: (linker) links standard libraries into the

build; also links between multiple C files

• GDB: (debugger) debug the

hardware/simulator/emulator

3. Why RISC-V? (6/12) RISC-V extension

27

What makes RISC-V different: its modular mindset

Base instruction set: Integer

Extended instruction set: the rest

(modular architecture helps fine-tune the

performance based on the developer’s needs)

The most common

extensions: IMAFDC

(also known as GC)

There are also a

lot more than just

IMAFDC :

3. Why RISC-V? (7/12) OS stack

28

To support an Operating System (OS), the ISA

has to support the OS stack or the M-/S-/U-mode.

RISC-V ISA not only supports the OS stack,

but also provides a privileged architecture.

Different scenarios of utilizing the OS stack:RISC-V privileged

architecture:

→ Better security scheme by having the hardware recognize

each code’s mode level. (read more at: Link)

https://www.five-embeddev.com/riscv-isa-manual/latest/priv-intro.html#introduction

3. Why RISC-V? (8/12) CHISEL

29

Chisel is a library.

Scala is a language.

• Scala itself is a high-level object-oriented

programming language

→ It is not designed for “hardware coding.”

• Chisel is a library attached to Scala to

define a set of coding rules.

→ It is designed for “hardware coding.”

• From Scala to Verilog:

 Scala → Java → FIRRTL → Verilog

1st arrow: Scala compiler named SBT

2nd arrow: executing Java

3rd arrow: FIRRTL compiler

3. Why RISC-V? (9/12) Summary

30

RISC-V revolutionizes computer system design

1. Modular at heart:

customizable ISA and customizable hardware

→ fine-tune the system to your specific needs.

2. Open-source community:

license-free ISA, open cores and SoCs, open-source libraries, open-source software,

etc. → reuse other developers’ designs → save time and effort for R&D

3. CHISEL (Constructing Hardware In Scala Embedded Language):

a new way to “coding” hardware circuits. When compiled, it will generate a true RTL

Verilog code.

→ a “meta-programming” language for hardware developers with parameters and sub-

designs that can be overridden or extended.

→ easy to develop “object-oriented” hardware library for reuse purpose.

3. Why RISC-V? (10/12) Common libraries

31

The common open RISC-V libraries that you can use

Chipyard (contains many common and

frequently used open IPs, including RISC-V

processors and other peripherals such as

uart, spi, sd-card, etc.):

https://github.com/ucb-bar/chipyard

fpga-shells

(contains many

common FPGA

configurations):

https://github.com/s

ifive/fpga-shells

https://github.com/ucb-bar/chipyard
https://github.com/sifive/fpga-shells
https://github.com/sifive/fpga-shells

3. Why RISC-V? (11/12) Common processors

32

Rocket is the most popular

among RISC-V processors:

https://github.com/chipsalliance/

rocket-chip

(it is an in-of-order processor)

Some famous RISC-V processors

BOOM is an out-of-order processor that can

rival ARM:

https://github.com/riscv-boom/riscv-boom

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/riscv-boom/riscv-boom

3. Why RISC-V? (12/12) Common books

33

Two “must-have” books for RISC-V

developers, from beginners to experts

RISC-V books that often used in

universities for teaching

Outline

34

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

4. Proposed System (1/8) Hardware modification

35

Proposed secure boot process with Root-of-Trust for TEE

1. Root key

installed at

the time

manufactured.

2. Hidden MCU

for the

flexible boot

program

3. Hierarchy-bus: TEE processors cannot access RAM/ROMs in the isolated domain (BUT

the isolated core can access ALL)

4. Proposed System (2/8) Key scheme

36

The

proposed

keys

scheduling

scheme

Link

https://doi.org/10.1109/ACCESS.2022.3169767

4. Proposed System (3/8) Key scheme: root CA

37

Step-by-step

● Step 1: The

manufacturer

plays the role of

root CA (public

key is well-known

& certificate is

self-signed)

4. Proposed System (4/8) Key scheme: developer cert.

38

Step-by-step

● Step 2:

manufacturer

generate root SR &

PR also offline, and

then uses SM to sign

on the PR and secure

BootLoader (sBL)

sBL is stored in the

same place with PR, the

isolated ROM.

4. Proposed System (5/8) Key scheme: product cert.

39

Step-by-step

● Step 3: (still offline)

the manufacturer (or

the provider)

generates the pair SD

& PD.

Then have the root

secret key generates

the DCert. and sign

the ZSBL.

4. Proposed System (6/8) Key scheme: updatable ZSBL

40

Here is the RoT

● SD is stored in the

isolated ROM.

● ZSBL & PD could be

in a flash outside.

● The very first task of

the isolated processor

is:

○ Verify the ZSBL

signature by

using the PR

→ this allows future

updates on the ZSBL.

4. Proposed System (7/8) Key scheme: program cert.

41

Step-by-step

● Step 4: (now on-chip)

the isolated processor

executes the ZSBL

and:

○ Use TRNG to

seed EC-genkey

& create the pair

of SK & PK

○ Load the FSBL

(hash & sign) to

the public RAM.

○ Wakes up the

TEE processors

4. Proposed System (8/8) Detail boot flow

42

The detail boot flow

based on the proposed

key scheduling.

Outline

43

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

5. Peripherals (1/14) EC/Ed-DSA

44

Ecliptic Curve (EC) and

Edwards-curve (Ed)

Digital Signature Algorithm (DSA)

• Support four curves: three of ECDSA

and one of EdDSA

• Support 256-bit, 384-bit, and 512-bit

• Support functions: gen-key, sign, and

verify

Link

https://doi.org/10.1109/ACCESS.2023.3236406

5. Peripherals (2/14) AES-GCM

45

Advanced Encryption Standard

(AES) with Galois/Counter Mode

(GCM)

• Support encryption and

decryption.

• Support 128-bit and 256-bit.

5. Peripherals (3/14) SHA3

46

SHA3-512

• Support 512-bit.

• The core was developed based on

an open-source project (link).

https://opencores.org/projects/sha3

5. Peripherals (4/14) HMAC-SHA2

47

Hash-based Message Authentication

Code (HMAC) with SHA2

• Two modes: HMAC-SHA2 or

SHA2 only.

• Support: 256-bit, 384-bit, and

512-bit.

Link

https://doi.org/10.1109/NEWCAS52662.2022.9842174

5. Peripherals (5/14) RSA

48

RSA-1024

• Minimize the area by

using less “big”-

registers as much

possible

• Small tasks are done

by primitives such as

getNumBits (number

of meaning LSBs), ±,

and <
• Primitive functions

execute 32-bit at a

time

5. Peripherals (6/14) AEAD

49

Authenticated Encryption with Associated Data (AEAD) (link)

• Use ChaCha20 as a stream cipher and Poly1305 as a MAC.

Link1

Link2

https://www.rfc-editor.org/rfc/rfc8439
https://doi.org/10.1109/ISOCC53507.2021.9614016
https://doi.org/10.3390/cryptography6020030

5. Peripherals (7/14) ChaCha20

50

ChaCha20

• A stream cipher that was standardized recently (link).

• Can work alone or team-up with Poly1305 to perform Authenticated Encryption with

Additional Data (AEAD).

Link

https://www.rfc-editor.org/rfc/rfc8439
https://doi.org/10.1109/ISOCC56007.2022.10031398

5. Peripherals (8/14) Poly1305

51

MulAcc sub-module

Poly1305

• A Message Authentication

Code (MAC) that was

standardized recently

(link).

• Can work alone or team-up

with ChaCha20 to perform

Authenticated Encryption

with Additional Data

(AEAD).

https://www.rfc-editor.org/rfc/rfc8439

5. Peripherals (9/14) TRNG

52

Our True Random Number

Generator (TRNG) is based on the

frequency collapse phenomenon

of Ring Oscillators (ROs).

Three edge multimodal ROs

The idea can be implemented in FPGA.

Link

→ frequency

collapse

from three

edges to

stable two

edges.

The proposed

TRNG

system based

on multimodal

ROs.

https://doi.org/10.1109/ACCESS.2021.3099534

5. Peripherals (10/14) TRNG

53

The wanted

waveform:

Proposed:

Conventional:

The proposed design passed (link):

• NIST SP800-90B & SP800-22

• AIS31 & AIS20

• PVT healthy test

2.5×2.5-mm2

ROHM180nm

on 2021/02

https://doi.org/10.1109/ACCESS.2022.3167690

5. Peripherals (11/14) PUF in VLSI

54

PUF architecture based on RO,

multimodal RO, and latches:

Link

The main

mechanism is based

on the metastability

of latches.

Physical Unclonable Function (PUF) is a physical

“object” that serves as a unique identifier for each device,

although the implementation is the same for all devices.

Example: fingerprints.

Everybody has a fingerprint, but

no two fingerprints are alike.

Passed the intra/inter-die tests:

https://doi.org/10.3390/fi14100298

5. Peripherals (12/14) PUF in FPGA

55
Link

Conventional RO-based PUF:

5-stage Feedforward RO (FRO):

Proposed FRO-based PUF in FPGA:

Passed the

intra/inter-die tests:

https://doi.org/10.1109/ISOCC56007.2022.10031300

5. Peripherals (13/14) NVRAM

56

Typical NVRAM design in standard CMOS technology
Proposed NVRAM design

without using special layer(s)

Simplified

operating

modes:

Link

https://doi.org/10.1109/ISCAS46773.2023.10181362

5. Peripherals (14/14) NVRAM

57

The physical phenomenon of the proposed NVRAM cell The chip passed intra/inter-

die tests with PVT variations.

PVT

tests:

Link

Die tests at

typical condition

of 3.3V@25oC

https://doi.org/10.1109/ISCAS46773.2023.10181362

Outline

58

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

6. Result (1/14) FPGA implementation

59

The proposed design was tested with the VC707 FPGA board.

6. Result (2/14) FPGA implementation

60

13.66%

6.92%

9.25%
1.99%

2.35%

2.17%

1.08%

4.82%

39.69%

7.93%

10.12%

LUT Ultilization

Rocket: RV32IMAC
IBex
RSA1024
HMAC-SHA2
AES-GCM
ChaCha20
Poly1305
AEAD
EC/Ed-DSA
SHA3-512
the rest

20.47%

5.02%

12.83%

2.76%

7.45%2.22%3.07%

6.89%

18.41%

4.55%
16.33%

Register Utilization

Rocket: RV32IMAC
IBex
RSA1024
HMAC-SHA2
AES-GCM
ChaCha20
Poly1305
AEAD
EC/Ed-DSA
SHA3-512
the rest

*Note: “the rest” means all the buses, TRNG,

 and utility-group peripherals such as GPIO, SPI, boot ROM, etc.

SoC resources utilization pie chart: implementation on VC707 FPGA

6. Result (3/14) Self-test software

61

Initial test and drivers for using crypto-cores were developed

Tests at FSBL (M-mode)

before boot into Linux

Drivers and tests (U-mode) after boot into Linux

6. Result (4/14) Self-test software

62

HMAC-SHA2

6.16× to 7.62 × faster

AES-GCM

7.49× faster

AEAD (ChaCha+Poly)

12.1× faster

Some examples of self-test software

6. Result (5/14) VLSI implementation

63

FPGA for using DDR memory

Chip

PCB

for

other

utilities

To boot rich OS (such as Linux),

a big memory space is required.

→ Off-chip DDR is needed.

→ An FPGA will be used for

DDR and PCIe hard IPs.

6. Result (6/14) VLSI implementation

64

32-bit Rocket-

Boom with

crypto-cores and

secure boot

5.0×5.0-mm2

ROHM-180nm

on 2021/06

64-bit Rocket-

Boom with

crypto-cores

& secure boot

5.0×7.5-mm2

ROHM180nm

on 2021/06

64-bit dual Rocket

with crypto-cores

and secure boot

5.0×5.0-mm2

ROHM180nm on

2021/02

64-bit dual

Rocket with

crypto-cores

5.0×5.0-mm2

ROHM-180nm

on 2021/09

6. Result (7/14) VLSI implementation

65

32-bit Rocket with TLS-1.3

crypto-cores and secure boot

5.0×5.0-mm2 ROHM-180nm on 2022/02

Core Rocket (×1)

ISA RV32IMAC

Cache $I =16KB and $D = 16KB

Crypto-cores: TRNG, RSA, AES-GCM, SHA3,

HMAC-SHA2, ChaCha20, Poly1305, AEAD, and

EC/Ed-DSA

#Gate 1,535,403

#Cell 466,882

Area (𝝁𝒎𝟐) 20,799,437

Density 71.43%

Power (mW) 1,992

Fmax (MHz) 71

#MOSFET 7,982,582

6. Result (8/14) VLSI implementation

66

*Note: “the rest” means all the buses, TRNG,

 and utility-group peripherals such as GPIO, SPI, boot ROM, etc.

SoC resources utilization pie chart: implementation on ROHM180nm

34.52%

24.66%5.47%

5.33%

4.67%

5.02%

3.49%

3.56%

2.75%

2.07%

8.46%

Area Utilization

RocketTile
EC/Ed-DSA
RSA-1024
ChaCha-Poly
SHA3-512
IbexTile
AES-GCM
HMAC-SHA2
ChaCha20
Poly1305
the rest

22.56%

29.24%

5.50%

6.00%

11.54%

2.95%

3.46%

3.82%

2.79%

2.68%
9.47%

Power Utilization

RocketTile
EC/Ed-DSA
RSA-1024
ChaCha-Poly
SHA3-512
IbexTile
AES-GCM
HMAC-SHA2
ChaCha20
Poly1305
the rest

6. Result (9/14) Comparison

67

Comparison with other secure-boot RISC-V-based TEE SoCs.

6. Result (10/14) Comparison

68

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS: secure boot by all hardware modules.

This work: crypto-cores just for accelerating

the boot flow, not a hard requirement.

6. Result (11/14) Comparison

69

Comparison with other secure-boot RISC-V-based TEE SoCs.
Even including crypto-cores,

this work still smaller.

6. Result (12/14) Comparison

70

Comparison with other secure-boot RISC-V-based TEE SoCs.

HECTOR-V: uses TEE processors to boot,

no crypto accelerators.

(they are not the same idea, but compared

based on the secure boot’s hardware

requirements)

This work: use IBex to boot, could excluded

the crypto-cores.

6. Result (13/14) Comparison

71

Comparison with other secure-boot RISC-V-based TEE SoCs.

Approximately the same

6. Result (14/14) Comparison

72

• Achieved:

❑ Secure boot process

with RoT for TEE.

❑ Flexible boot flow.

❑ Complete isolation

between the boot

process and the TEE

domain.

❑ Has exclusive storage

for boot program

only.

❑ Cryptographic

accelerators are

available.

Outline

73

1. Introduction

2. TPM and TEE

3. Why RISC-V?

4. Proposed System

5. Peripherals

6. Result

7. Conclusion

7. Conclusion (1/1) Summary

74

Key Achievements

1. TEE-HW with cryptographic accelerations: using the framework, custom hardware was

made for accelerating the TEE boot flow.

2. TEE-HW with isolated RoT: the heterogeneous architecture was proposed to isolate the

RoT from the TEE side. The manufacturer and root keys are stored at the time

manufactured. The bootloader program is flexible and can be updated.

3. Silicon-proof TEE-HW chips: ROHM-180nm chips were made for the TEE-HW with

isolated RoT; and the measurements and tests were done.

4. FPGA and VLSI implementations: the proposed system can work on both FPGA and

VLSI. All the cryptographic primitives, such as TRNG and PUF, have their equivalent in

FPGA.

THANK YOU

75
2023/10/27

