

Ultra-Low-Power (ULP) System-on-Chip (SoC) for Internet-of-Things (IoT) Edge Computing

Trong-Thuc Hoang

2022/11

1. Introduction

- 2. Ultra-low-power SoC state-of-the-art
- 3. Our attempt for Ultra-low-power SoC
- 4. Conclusion

1. Introduction

- 2. Ultra-low-power SoC state-of-the-art
- Our attempt for Ultra-low-power SoC
 Conclusion

1. Introduction (1/3) Author

Trong-Thuc Hoang University of Electro-Communications (UEC) hoangtt@uec.ac.jp

https://thuchoang90.github.io/

(you can find tutorials and project sources on the website)

1. Introduction (2/3) University

University of Electro-Communications (UEC), Tokyo, Japan

https://www.uec.ac.jp/

1. Introduction (3/3) Laboratory

http://vlsilab.ee.uec.ac.jp/

1. Introduction

- 2. Ultra-low-power SoC state-of-the-art
- Our attempt for Ultra-low-power SoC
 Conclusion

2. Ultra-low-power SoC (1/8) Needs for IoT edge

2. Ultra-low-power SoC (2/8) Typical IoT edge node

A typical IoT edge node nowadays:

Sensor

- Transceiver

Battery-less IoT node

Lower the power consumption of the MCUs

- \rightarrow Pushing more computational capability to the IoT nodes
 - \rightarrow Data can be processed locally (rather than sent frequently to the cloud)
 - \rightarrow Reduce responding latency AND transceiver's energy

(given the fact that RF modules nowadays consume more than the MCUs)

2. Ultra-low-power SoC (3/8) Energy harvesting today

Energy source	Technology	Power density	Advantages	Disadvantages	Energy
Solar	PV cell	10 - 100 mW / cm ² (outdoor) < 100 μW / cm ² (indoor)	High-output voltage Low fabrication costs Predictable	Unavailable at night Non-controllable	harvesting nowadays:
RF	Antenna	0.01 - 0.1 μW / cm ² 1- 10 mW / cm ²	Available anywhere, anytime Predictable Controllable	Distance dependent Low-power density	Depending on the technology
Mechanical vibrations and pressure	Piezoelectric	4 - 250 μW / cm³	High-power density No external voltage source Simplicity design and fabrication Controllable	Highly variable output Unpredictable	but a few μ Ws power supply
	Electromagnetic	300 - 800 μW / cm ³	High-output currents Robustness Low-cost design Controllable	Relatively large size Unpredictable	are well in the range.
	Electrostatic	50 – 100 μW / cm³	High-output voltage Relatively larger output power density Possibility to build low-cost devices Controllable	Requires bias voltage Unpredictable	→ Goal: a complete SoC solution for self-
Human heat	Piezoelectric Pyroelectric	< 35 μW / cm ²	Sustainable and reliable Available Controllable	Low-power density Unpredictable	powered IoT nodes
Biomechanical	Electromagnetic Piezoelectric Triboelectric Electrostatic	< 4 μW / cm ³ < 300 μW / cm ³	Available Controllable	Low-power density Unpredictable	Source: <i>IEEE Access</i> (2021) [2] 10

2. Ultra-low-power SoC (4/8) Modular IoT-SoC

Issue #1: modular IoT-SoC architecture based on RISC-V

Open-source modular framework aiming for:

- Highly customizable
- Flexible and portable
- Wide range of applications

Using open-source RISC-V, we can:

- Cheery-pick the wanted ISA extensions.
- Multiple options for the core processor(s) with wanted features (*i.e.*, *low-power*, *high-performance*, *and security*).
- Easy to develop & debug software.
- Vast options of peripherals: open sources, commercial IPs, in-house developments. 11

2. Ultra-low-power SoC (5/8) FD-SOI process

Issue #2: using Fully Depleted Silicon On Insulator (FD-SOI) processes

FD-SOI technology allows:

- Reducing leakage currents significantly
- Back-gate biasing technique

□ Apply reverse bias → even more power consumption reduces

Combines a small MCU with FD-SOI \rightarrow sub- μ W SoC is well in the realm of reality

Energy harvesters (source: <u>IEEE Access</u>,2021 [2]):

 $1 \text{s mW}/cm^2$

- Solar sources:
- Electromagnetic sources: $100s \ \mu W/cm^2$

SOTB-65nm (source: <u>*TCAS-II*</u>,2021 [3])

A sub-µW SoC will provide a comfortable room for the RF and sensing circuits. → Closing the gap toward wireless & batteryless IoT edge nodes.

2. Ultra-low-power SoC (6/8) ULP StdCell

Issue #3: Ultra-Low-Power (ULP) standard cell

Design a ULP standard cells library: intentionally trade-off F_{Max} for low power

Schematic of the NAND2 gate

Layout of the NAND2 gate

Source: <u>ISSCC</u> (2011) [4] 13

2. Ultra-low-power SoC (7/8) RF module

Issue #4: Ultra-Low-Power (ULP) RF transceiver & communication protocol

- Traditional IoT networks used existing cellular networks: LTE-M, NB-IoT, LPWAN, and WiFi.
 - \rightarrow Nowadays, short-range Bluetooth Low Energy (BLE) &

Long Range radio (LoRa) are better for IoT.

- Best attempts in reducing RF power consumption (source: <u>MOCAST</u>, 2018 [5]):

 Receiver: 1s to 10s mW
 - □ Transmitter: 10s to 100s mW
 - → Transceivers are easily in the range of mWs, with transmitters consuming about $5 \times$ to $10 \times$ more than a receiver.
- Propose a solution:

Just ditch the transmitter and use a different approach for communications \rightarrow The goal is to bring the transceiver module down to the range of μ Ws

(source: <u>ISSCC</u>, 2020 [6])

2. Ultra-low-power SoC (8/8) RF module

Issue #4: Ultra-Low-Power (ULP) RF transceiver & communication protocol

1. Introduction

- 2. Ultra-low-power SoC state-of-the-art
- Our attempt for Ultra-low-power SoC
 Conclusion

3. Our attempts (1/6) Open8: 8-bit MCU

Experiment with small MCUs:

try to achieve sub-µW power consumption

Open8 core data-path

8-bit RISC processor

Open8 in <u>TCAS-II</u> (2021) [3]

3. Our attempts (2/6) Leros: 16-bit MCU

Experiment with small MCUs:

try to achieve sub-µW power consumption

Leros in <u>ICICDT</u> (2022) [7]

3. Our attempts (3/6) SERV: 32-bit serial MCU

Experiment with small MCUs:

try to achieve sub- μW power consumption

SERV in *ISOCC* (2021) [8]

3. Our attempts (4/6) Highlight key measurements

Experiment with small MCUs:

try to achieve sub-µW power consumption

Open8 in <u>TCAS-II</u> (2021) [3] SERV in <u>ISOCC</u> (2021) [8]

3. Our attempts (5/6) Open8 + SERV

Experiment with small MCUs:

try to achieve sub- μW power consumption

The dual-core of Open8 & SERV in this chip is just for comparison fairness.

Open8+SERV in ROHM-180nm

2. Ultra-low-power SoC (6/6) What if: Open8 + ULP StdCell?

Source: <u>ISSCC</u> (2011) [4]

Process		0.13µm 8-metal CMOS	500 Graw/MUz CE@0.26 V				
Design		8x8 Multiplier		509.6pW/MHz-GE@0.26-V			
Area (S1/S4/S16)		19176/23978/45002µm ²] //				
Supply Voltage		min. max.			۲, F		
(S1/S4/S16)		84/68/62mV 1.2V					
Minimum Er	nergy/	Operation Point		caling eq	[uations_in_ <i>Integration</i> (2017) [$\begin{bmatrix} 10 \end{bmatrix}$	
Frequency	S1	544.8kHz@260mV					
	S 4	328.3kHz@233mV					
	S16	210.1kHz@226mV		24			
Power	S1	346.6nW@260mV	1	345.14pW/MHz-GE			
	S 4	243.8nW@233mV		@0.5-	V (SOTB65 no bias)		
	S16	275.6nW@226mV		000			
Energy/	S1	0.63pJ@260mV	1 n				
Operation	S 4	0.74pJ@233mV					
	S16	1.31pJ@226mV]		•		
Minimum Supply Voltage		Open8 [26]		SOTB-65nm: 99.4nW			
Frequency	S1	15.20kHz@84mV	$\left \left(0 L C \right) \right $		$\bigcirc 0.5 \text{ V}$ no bios & 22 $\text{V} \text{U}_{7}$		
	S 4	10.35kHz@68mV	(9KGE)				
	S16	5.15kHz@62mV		7 [<mark>77</mark>]	$SOTB_{65nm} \cdot 22.09nW$		
Power	S1	29.9nW@84mV					
	S 4	21.1nW@68mV	(2kGE)		@0.5-V no bias & 32-KHz		
	S16	17.9nW@62mV					
Energy/	S1	1.97pJ@84mV	* <i>Note:</i> ~10× more power reduction when a reverse bias is applied.				
Operation	S 4	2.04pJ@68mV					
	S16	3.48pJ@62mV					

1. Introduction

- 2. Ultra-low-power SoC state-of-the-art
- 3. Our attempt for Ultra-low-power SoC

4. Conclusion

4. Conclusion (1/1)

Toward the final goal of wireless self-powered IoT edge computing

- 1. A complete modular IoT-SoC framework will significantly reduce the R&D time.
- 2. FD-SOI processes should be used for ULP SoC.
- 3. ULP StdCell and RAM libraries should be developed with a specific mindset for IoT applications.
- 4. A ULP RF transceiver should be developed to reduce the total power consumption of an IoT edge node.

Ultra-low-power but also secure?

- The heavier the cryptographic functions, the better the security.
 → But that goes the opposite direction of an ideal IoT edge application.
- Therefore, ULP + Secure SoC design is the key direction that we are heading to.

THANK YOU

