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1. Introduction (2/5) RISC-V project timeline

2018

VexRiscv32(1)

SOTB65nm

2x1.5-mm2

09 2020

2019

10

Rocket64(1)

ROHM180nm

5x5-mm2

Rocket64(4)

ROHM180nm

5x7.5-mm2
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1. Introduction (3/5) RISC-V project timeline

VexRiscv32(1)

ROHM180nm

2.5x2.5-mm2

2020 2021

Rocket32(1)

+ Boom32(1)

+ Crypto-cores

ROHM180nm

5x5-mm2

06

Rocket64(2)

+ Crypto-cores

ROHM180nm

5x5-mm2

01

Boom64(1) + 

Crypto-cores

ROHM180nm

5x5-mm2
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1. Introduction (4/5) RISC-V project timeline

2021 202202

Rocket32(1)

+ Boom32(1)

+ Crypto-cores

+ TRNG

+ Secure boot

ROHM180nm

5x5-mm2

Rocket64(2)

+ Crypto-cores

+ TRNG

+ Secure boot

ROHM180nm

5x5-mm2

06

Rocket64(1) + Boom64(1)

+ Crypto-cores & TRNG

+ Secure boot

ROHM180nm : 5x7.5-mm2
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1. Introduction (5/5) RISC-V project timeline

2022
02

Rocket32(1)

+ TLS-1.3 

Crypto-cores

+ TRNG

+ Secure boot

ROHM180nm

5x5-mm2
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2. RISC-V vs. Cyber-security (1/8) What is ISA?

10

ISA means Instruction Set Architecture

Software tools: assembler, compilers, debugger, linker, etc.

Processor: ALU, FPU, registers, CSRs, branch predictor, caches,  etc.

ISA: the interface between software & hardware architects

1) How many instructions, and which is which?

2) In an instruction, what field means what?

3) Addressing & data-path (8/16/32/64/128-bit)?

4) What is supported and what is not?

5) etc.

ISA has to define all these kinds of stuffs:



2. RISC-V vs. Cyber-security (2/8) CISC vs. RISC
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CISC

(Complex Instruction Set Computer)

1) Emphasis on hardware

2) Includes multi-clock complex 

instructions

3) Memory-to-memory mindset

4) Small code sizes, high cycles/s

5) Transistors used for storing complex 

instructions

RISC

(Reduced Instruction Set Computer)

1) Emphasis on software

2) Single-clock reduced instructions only

1) Register-to-register mindset

2) Large code sizes, low cycles/s

3) Spends more transistors, and most of them 

are used for storing data

RISC-V simply means RISC architecture version five

Nowadays, almost 

all processors in the 

market are RISCs.

RISC win CISC win



2. RISC-V vs. Cyber-security (3/8) RISC-V ISA

12

Open-source RISC-V means open-source ISA, no more, no less.

Licensed free:

License depended on authors/developers:

● RISC-V ISA

● RISC-V toolchain

● RISC-V processors

● RISC-V software applications

● RISC-V-related products

(some other common ISAs: i386, amd64, ARM 32/64, AVR, MIPS, NiosII, etc.)

RISC-V Foundation:   https://riscv.org/

● Official released ISA specification

● Many cores, SoCs, & software are available

● Developers can reuse each other designs & tools

→ significantly reducing R&D time and effort

https://riscv.org/


2. RISC-V vs. Cyber-security (4/8) RISC-V ISA

13

What makes RISC-V different:   its modular mindset

Base instruction set: Integer

Extended instruction set: the rest

(modular architecture helps fine-tune the 

performance based on the developer’s needs [1])

The most common 

extensions: IMAFDC

(also known as GC)

There are also 

a lot more than 

just IMAFDC :

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf


2. RISC-V vs. Cyber-security (5/8) RISC-V ISA

14

To support an Operating System (OS), the ISA has to support the OS stack

or the M-/S-/U-mode.

RISC-V ISA not only supports the OS stack,

but also provides a privileged architecture [2].

Different scenarios of utilizing the OS stack:RISC-V privileged 

architecture:

→ Better security scheme by having the hardware 

recognize different codes executed at different modes.

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf


2. RISC-V vs. Cyber-security (6/8) RISC-V toolchain

15

RISC-V toolchain and its ecosystem [3]:

A typical 

C-to-

target 

scenario:
Three most important tools:

● GCC: (cross C compiler) make a C code into 

assembly code

● LD: (linker) links standard libraries into the 

build; also links between multiple C files

● GDB: (debugger) debug the 

hardware/simulator/emulator

https://github.com/riscv-collab/riscv-gnu-toolchain


2. RISC-V vs. Cyber-security (7/8) RISC-V security

16
[4]

Security topics 

that attract 

attention in the 

RISC-V 

community.

https://arxiv.org/pdf/2107.04175.pdf


2. RISC-V vs. Cyber-security (8/8) RISC-V security

17

The top reasons for choosing RISC-V for Cyber-security

● For an opportunity to secure the Internet-of-Things (IoT): cybersecurity software is 

ultimately ineffective. To truly address the problem, we need to address the issue at its 

core: directly inside the SoCs.

● For price-sensitive applications: specific and limited (also usually repeated) tasks can 

be solved cost-efficiently with a base core and a few specialized components.

● For an open approach to cyber-security: RISC-V's ecosystem has seen significant 

growth over the past few years. A Rich and strong open-source community promises 

equally rich and strong public libraries and open-source designs.

● For frequently discussed and addressed security issues: cyber-security hot topics 

are discussed frequently at least once a month. They are hosted by the two work groups 

of Cryptographic Extensions and Trusted Execution Environment (TEE) [5].

https://riscv.org/blog/2020/03/risc-v-an-open-approach-to-system-security/
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3. Secure Boot for TEE (1/23) What is TEE?

19

Trusted Execution Environment (TEE) [6] provides:

1.Integrity:     the code and data cannot be tampered.

2.Confidentiality: the application’s content cannot be read.

3.Attestation:     proof to a remote party that the system is 

safe.
A typical TEE setup:

● Secure (trusted) vs. non-secure 

(untrusted) worlds.

● Barrier enforcer by: software AND 

hardware.

● All TEEs need some sort of 

hardware-assisted modules: Root-

of-Trust (RoT) and primitives.

● HW primitives (examples): cache flushing, cache partitioning, memory isolation, memory 

encryption, keys management, bus access controller, enclave encryption, and so on.



3. Secure Boot for TEE (2/23) What is TEE?

20

Root-of-Trust (RoT) in theTEE:

● Root-of-Trust (RoT): the 1st verification at reset, the 

starting-point for CoT.

● Chain-of-Trust (CoT): a series of signatures & 

certificates started from the RoT up to the Rich OS.

Secure boot guarantee:

● All TEE-related assets (code, 

trusted OS/drivers, hardware 

primitives) are installed and at the 

initial states (as expected by 

designers).

● Means: EVERYTHING is 

signature checked, and EVERY 

sensitive data are immutable or 

held in isolation.



3. Secure Boot for TEE (3/23) TEE vs. secure boot

21

TEE is just an isolated environment. It isn’t, and 

shouldn’t be, the Root of Trust (RoT).

Most TEE models have to assume:

● The hardware is trusted and securely booted.

● The bootloader is “bug-free,” and the RoT has not 

been tampered.

To achieve this, we can:

1. Use TEE processors for the secure boot.

2. Use extra hardware or third-party IPs.

3. Other approaches such as dynamic RoT without reset.

Bury root keys deep under layers of obscurity just increase the cost for attackers. The attack 

surface still exists as long as the secure boot process and RoT are still in the TEE system.



3. Secure Boot for TEE (4/23) TEE implementations

22

● Many TEE models 

were proposed: 

different set goals, 

different resources, 

and different 

developing 

mindsets.

● Most closed-source 

TEEs are fine-tuned 

for their specific 

processors.

Intel SGX [7]: aiming 

for conventional PCs
AMD SEV [9]: aiming for 

server’s cloud computing

ARM TrustZone [8]: aiming for 

smartphones/embedded-systems

https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf


3. Secure Boot for TEE (5/23) TEE implementations

23

MultiZone [10]: 

lightweight TEE, 

multi-purposes, 

aiming for 

embedded/IoT 

applications

TIMBER-V [12]: 

similar approach with 

Intel SGX, but uses 

strong hardware 

enforcers based on 

“Tag”-ID across the 

entire system

Sanctum 

[11]: similar 

approach 

with Intel 

SGX, but for 

RISC-V 

processors

https://hex-five.com/


3. Secure Boot for TEE (6/23) TEE implementations

24

Keystone [13]: is not a specific 

type of TEE, but a modular TEE 

framework (try its best to be 

hardware-agnostic)

CURE [14]: a complete opposite with 

Keystone, this TEE model requires a total 

hardware modification across every 

architectural level (but provides strong 

isolation with multiple types of enclaves)



3. Secure Boot for TEE (7/23) TEEs comparison

25

● Choose Keystone for the 

software implementation:

■ Open-source: modular 

TEE framework, versatile 

usage.

■ Kernel-space enclave:

better isolation in general.

■ Hardware-agnostic: does 

not require any special 

custom-built features to 

function.



3. Secure Boot for TEE (8/23) Propose architecture

26

Propose: A secure boot process with RoT for TEE

Main points of 

the proposed 

architecture:

1. Root key 

installed at the 

time 

manufactured.

2. Hidden MCU for the flexible boot program

3. Hierarchy-bus: TEE processors cannot access RAM/ROMs in the isolated domain (BUT 

the isolated core can access ALL)



3. Secure Boot for TEE (9/23) Secure boot process

27

The proposed 

keys scheduling 

scheme.



3. Secure Boot for TEE (10/23) Secure boot process

28

Step-by-step

● Step 1: The 

manufacturer 

plays the role of 

root CA (public 

key is well-

known & 

certificate is self-

signed)



3. Secure Boot for TEE (11/23) Secure boot process

29

Step-by-step

● Step 2: 

manufacturer 

generate root SR

& PR also offline, 

and then uses SM

to sign on the PR

and secure 

BootLoader (sBL)

sBL is stored in the 

same place with PR, 

the isolated ROM.



3. Secure Boot for TEE (12/23) Secure boot process

30

Step-by-step

● Step 3: (still 

offline) the 

manufacturer (or 

the provider) 

generates the pair 

SD & PD.

Then have the root 

secret key

generates the 

DCert. and sign the 

ZSBL.



3. Secure Boot for TEE (13/23) Secure boot process

31

Here is the RoT

● SD is stored in the 

isolated ROM.

● ZSBL & PD could 

be in a flash 

outside.

● The very first task 

of the isolated 

processor is:

○ Verify the ZSBL 

signature by 

using the PR

→ this allows future 

updates on the 

ZSBL.



3. Secure Boot for TEE (14/23) Secure boot process

32

Step-by-step

● Step 4: (now on-

chip) the isolated 

processor executes 

the ZSBL and:

○ Use TRNG to 

seed EC-genkey 

& create the pair 

of SK & PK

○ Load the FSBL 

(hash & sign) to 

the public RAM.

○ Wakes up the 

TEE processors



3. Secure Boot for TEE (15/23) FPGA result

33

Build Reports of the Proposed TEE SoC in Virtex-7 FPGA (XC7VX485T)

● Build with default configuration:

○ ISA: RV64IMAFDC.

○ Cache: 16-KB for inst. & 16-KB for data.

○ L2 cache: 512-KB.

○ Isolated sub-system: included.

○ PCIe: excluded.



3. Secure Boot for TEE (16/23) VLSI result

34

Synthesis results of the Proposed TEE SoC in ROHM-180nm.

● Build with default configuration:

○ ISA: RV64IMAFDC.

○ Cache: 16-KB for inst. & 16-KB for data.

○ L2 cache: 512-KB.

○ Isolated sub-system: included.

○ PCIe: excluded.

*Note: the used tools are Cadence’.



3. Secure Boot for TEE (17/23) Comparison

35

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)



3. Secure Boot for TEE (18/23) Comparison

36

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

ITUS: secure boot by all hardware modules.

This work: crypto-cores just for accelerating 

the boot flow, not a hard requirement.



3. Secure Boot for TEE (19/23) Comparison

37

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

Even including crypto-cores, 

this work still smaller.



3. Secure Boot for TEE (20/23) Comparison

38

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

HECTOR-V: uses TEE processors to 

boot, no crypto accelerators.

(they are not the same idea, but compared 

based on the secure boot’s hardware 

requirements)

This work: use IBex to boot, could 

excluded the crypto-cores.



3. Secure Boot for TEE (21/23) Comparison

39

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

Approximately the same



3. Secure Boot for TEE (22/23) Comparison

40

Achieved:

● Secure boot 

process with RoT 

for TEE.

● Flexible boot flow.

● Complete isolation 

between the boot 

process and the 

TEE domain.

● Has exclusive 

storage for boot 

program only.

● Cryptographic 

accelerators are 

available.

HECTOR-V

[17]

ITUS

[15, 16]

CURE

[18]

WorldGuard

[19]



3. Secure Boot for TEE (23/23) Summary

41

Key Achievements

1. TEE-HW with cryptographic accelerations: custom hardware was made for 

accelerating the TEE boot flow.

2. TEE-HW with isolated RoT: the heterogeneous architecture was proposed to isolate the 

RoT from the TEE side.

■ The manufacturer and root keys are stored at the time manufactured.

■ The ability to make a secure direct connection from the isolated bus to outside 

peripherals.

■ The secure boot flow is executed by the isolated environment.

■ The bootloader program is flexible and can be updated.
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4. Spectre attack in OoO Processors (1/12)

Spectre - Cache side-channel attack

Target: RISC-V Out-of-order BOOM

First variants:

● Spectre v1: Bound Check Bypass

● Spectre v2: Branch Target Injection

BOOM suitable for Spectre

● Branch Predictor Unit

● Speculative Execution

● Caching

● …

Cache memory

43



4. Spectre attack in OoO Processors (2/12)

a = 1

a = 2

a = 3

a = X

TRUE => Execute B

TRUE => Execute B

TRUE => Execute B

Guess as TRUE => Execute B

TRUE => Execute B…

User input Process

Speculative execution example:
IF (a < 10) 

Run B

44



4. Spectre attack in OoO Processors (3/12)

Typical attack strategy:

1. Setup processor cache, for example, fill or flush 

all the cache lines, as in timing attacks

approaches.

2. Force mis-speculation in victim code to leak 

secret into a side-channel

3. Attacker recovers secret from side-channel effect

in the cache (usually the access load time).

45



4. Spectre attack in OoO Processors (4/12)

Implement RISC-V processor

● BOOM core: exploited

● Rocket core: not exploited

FPGA VC707

Attack log (success case)

Observe cache accessing time after 

an attack attempt 46



4. Spectre attack in OoO Processors (5/12)

Software mitigation method

● Fence instructions

● Speculation Load Hardening

Properties:

● Modify to strengthen victim program

● Require to re-compile source code

● Affect on performance

if (x < a_size)

return 

a[x];

else

return ‘0’;

Original target for spectre attack

47



4. Spectre attack in OoO Processors (6/12)

Fence instructions
=> Force in-order execution

TRUE

FALS

E
x < a_size

fence r,rw return ‘\0’

return ‘a[x]’

x < a_size

Return a[x] Return ‘\0’

TRUE

FALSE

Original code

48



4. Spectre attack in OoO Processors (7/12)

No mitigation

• Normal execution cycle: 210

Mitigation using fence

• Normal execution cycle: 242 - 290

• Performance loss: 15 – 43%

Performance measure

49



4. Spectre attack in OoO Processors (8/12)

D-Cache
Lower level 

memory
MSHR

Hardware mitigation method: modifying MSHRs

● MSHRs: miss status holding registers 

● Located in The Load/Store Unit (LSU)

● Handling data forwarding when mis-speculative events

=> Delay the data forwarding when mis-speculative 

50



O

Boom v3 & Spectre v2
Secure Boom v3 & Spectre v2

X

● Config: Single core RISC-V MediumBoom

● Verilator software simulation

● Secure Boom: modify MSHRs for Spectre-

resistant

Secure Boom v2 & Spectre v2

X

4. Spectre attack in OoO Processors (9/12)

51



4. Spectre attack in OoO Processors (10/12)

● Benchmark riscv-tests

● The performance ratio of Boom-v2 is set as 1.0

52



4. Spectre attack in OoO Processors (11/12)

● MSHRs resources utilization  

Configuration LUT FF

Normal MSHR 1926 1120

Secure MSHR 1980 (2.8%) 1124 (0.4%)

53



4. Spectre attack in OoO Processors (12/12)

Spectre on 

RISC-V 

Boom

Detection

Prevention

Software approach Hardware approach(*)

Idea or 

Research

● Analyse hardware 

performance counter

● Use machine learning

• Fence instruction

• Speculation Load Hardening 

(Index masking)

• Modifying MSHRs

Benefits

● High accuracy and 

simple (>95%)

● Low performance 

overhead (~2%)

• Strengthen victim program

• Simple to implement

• Low performance 

overhead 

Drawbacks

● Need to find action 

after detection

● Need to re-create model 

for new threat

• Require to re-compile victim 

code

• High performance overhead: 15-

43%

• Complicated.

• Time consuming to 

verify and develop.

(*) Currently on research stage 54
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5. Prevent CPA with RDFS (1/10)

56

Side-channel attacks:

Exploit unavoidable side-channel 

information in cryptanalysis.

Power Analysis attacks:

Using Power consumption or 

Electromagnetic radiation.

A cryptographic device leaks 

side-channel information



5. Prevent CPA with RDFS (2/10)

57

Countermeasures for Cryptographic SoC:

Existing techniques are not suitable:

- Masking: Reduce performance, Increase 

power, area.

- Hiding: Huge hardware overheads.

⇒ Proposed Ideas:

- Randomly scale the clock freq. of 

Crypto.Acc. after each encryption/decryption.

- Only applied to the Crypto.Acc.

- Create as many Clock frequencies as 

possible.

Example of Cryptographic SoC 



5. Prevent CPA with RDFS (3/10)

58

Unprotected Cryptographic SoC (TEE-Hardware)

Unprotected SoC (TEE-

hardware):

● 32-bit RISC-V SoC

● DDR Controller ⇒
support Linux OS

● Crypto. Accelerator:

○ AES-128/256

○ SHA3

○ ED25519

○ PRNG

● Fixed system Clock: 

Fsys = 50MHz



5. Prevent CPA with RDFS (4/10)

59

Protected SoC with RDFS:

● Add Clock Generation 

peripherals (use Xilinx’s Clock 

Manager IP)

● Create > 219.000 frequencies

(in range from 50MHz to 

100MHz)

● Verify accuracy by Pulse 

counter

● Only applied to AES-128 

module

● Scale AES’s CLK after each 

encryption

Protected Cryptographic SoC with RDFS [21]



5. Prevent CPA with RDFS (5/10)

60

Xilinx 7-Series' Mixed Mode Clock Manager [22]

Constraints for Kintex-7 devices:

● 10MHz ≤ Fin ≤ 800MHz

● 10MHz ≤ (Fin / D) ≤ 450MHz

● 600MHz ≤ FVCO ≤ 1200MHz

● 1 ≤ D ≤ 106 (integer)

● 2 ≤ M ≤ 64 (fractional with 0.125 

increment)

● 2 ≤ O0 ≤ 128 (fractional with 0.125 

increment)

● 1 ≤ O1-6 ≤ 128 (integer)



5. Prevent CPA with RDFS (6/10)

61

How to use:

● Generate all possible settings for 

D,M,O0

● Store setting values as C header 

in your code

● Randomly select, apply a new 

setting after each encryption or 

decryption

Xilinx 7-Series' Mixed Mode Clock Manager [22]



5. Prevent CPA with RDFS (7/10)

62

Available

Original 

Unprotected SoC
AES accelerator Protected SoC Hardware 

Overhead 

(%)Utilization (%) Utilization (%) Utilization (%)

LUT 101400 48989 48.31 3169 3.13 51047 50.34 4.20

FF 202800 39298 19.38 3307 1.63 39516 19.49 0.55

BRAM 325 30 9.23 0 0 30 9.23 0

MMCM 8 2 25 0 0 3 37.5 50

Implementation results on Kintex-7 FPGA



5. Prevent CPA with RDFS (8/10)

63

Test Vector Leakage Assessment (TVLA) results:

● RDFS with 219,412 clk freq. (50MHz - 100MHz)

● Does not detect any leakage in 5 million power traces



5. Prevent CPA with RDFS (9/10)

64

CPA attacks #1 #2 #3 #4

Para-

meters

Target device Unprotected SoC Unprotected SoC Unprotected SoC Protected SoC

Operating mode Bare-metal Bare-metal Linux OS Bare-metal

Measuring method Single acquisition Averaging-64 Averaging-64 Single acquisition

Power model Hamming Weight model

Number of attacking traces 70,000 18,000 20,000 5 million

Attack

Results

Number of byte revealed 12/16 13/16 13/16 0/16

Min traces required 1,642 to 58,685 465 to 7,613 1,650 to 19,591 N/A

Average traces required 28,683 1,928 10,175 N/A

Correlation Power Analysis (CPA) results:

● Cannot extract any byte of secret key with 5 million power traces



5. Prevent CPA with RDFS (10/10)
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DLSCA attack # #1 #2 #3 #4 #5

Para-

meters

Target device Unprotected SoC Unprotected SoC Unprotected SoC Protected SoC Protected SoC

Operating mode Bare-metal Bare-metal Linux OS Bare-metal Bare-metal

Measuring method Single acquisition Averaging-64 Averaging-64 Single acquisition Single acquisition

Number of 

profiling traces
60,000 15,000 17,000 1,000,000 60,000

Number of

attacking traces
12,000 3,000 3,000 100,000 12,000

Attack

Results

Number of byte revealed 16/16 16/16 9/16 13/16 0/16

Min traces required 4,231 805 2,022 45,924 N/A

Deep Learning based Side Channel Attacks (DLSCA) results:

● Extremely powerful, can break RDFS countermeasure

● Require 16.67 times number of profiling traces

● Require 8.33 times number of attacking traces
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Frequency Scaling (RDFS)
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Conclusion (1/1)

Keys takeaway
1. RISC-V is an opportunity to secure the IoT and is friendly with price-sensitive applications. 

It is an open approach to cyber-security with a solid and rich open-source community.

2. A Trusted Execution Environment (TEE) is the formal way to do the trusted vs. untrusted 

execution domains. However, TEE should not handle the Root-of-Trust (RoT) due to 

security concerns. Therefore, a platform that can provide a secure boot process with RoT 

utterly inaccessible from the TEE processors after boot is necessary.

3. RISC-V Out-of-order Processor has been proved vulnerable against cache side-channel 

attack (Spectre). Fortunately, detection and mitigation methods have been studied and 

implemented. Our approach for a secure MSHR (miss status holding register) has 

demonstrated a low-performance loss and small resource utilization solution. 

4. Power Analysis attacks are powerful tools to break the security of cryptographic devices. 

Using RISC-V architecture, designers can easily apply suitable countermeasures to improve 

the system’s resistance against these kinds of attacks. 67
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