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1. Introduction (2/5) RISC-V pI‘OjeC timeline
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1. Introduction (3/5) RISC-V prOJect timeline
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. Introduction (4/5) RISC-V project timeline
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2. What is RISC-V, and How Does It Affect Cyber-Security?



2. RISC-V vs. Cyber-security (1/8) what is ISA?

ISA means Instruction Set Architecture

Software tools: assembler, compilers, debugger, linker, etc.

ISA: the interface between software & hardware architects

Processor: ALU, FPU, registers, CSRs, branch predictor, caches, etc.

ISA has to define all these kinds of stuffs:

1) How many instructions, and which is which? 15 0

2) In an instruction, what field means what? Unused 9-bit Instruction

3) Addressing & data-path (8/16/32/64/128-bit)?

4) What is supported and what is not? 8 6 5 3 2 0
Opcode Reg X Reg Y

5) etc.

10



2. RISC-V vs. Cyber-security (2/8) CISC vs. RISC

CISC

(Complex Instruction Set Computer)

1) Emphasis on hardware

2) Includes multi-clock complex
Instructions

3) Memory-to-memory mindset

4) Small code sizes, high cycles/s

5) Transistors used for storing complex

instructions

RISC
(Reduced Instruction Set Computer)
1) Emphasis on software
2) Single-clock reduced instructions only

1) Register-to-register mindset

2) Large code sizes, low cycles/s

3) Spends more transistors, and most of them
are used for storing data

RISC win CISC win
7 N Nowadays, almost
time time cycle instruction :
Performance = = _ _ all processors in the
program cycle instruction program
market are RISCs.

RISC-V simply means RISC architecture version five

11




2. RISC-V vs. Cyber-security (3/8) RISC-V ISA

Open-source RISC-V means open-source ISA, no more, no less.

(some other common ISAs: 1386, amd64, ARM 32/64, AVR, MIPS, Niosll, etc.)
RISC-V Foundation: https://riscv.org/

b NISC e Official released ISA specification

e Many cores, SoCs, & software are available
e Developers can reuse each other designs & tools
— significantly reducing R&D time and effort

RISC-V Exchange: Available Software

U RISC-V Licensed free: e RISC-V ISA
e RISC-V toolchain

RISC-V Exchange: Cores & SoCs
License depended on authors/developers:

» e RISC-V processors
; e e RISC-V software applications
, e RISC-V-related products 12


https://riscv.org/

2. RISC-V vs. Cyber-security (4/8) RISC-V ISA

What makes RISC-V different:;

Its modular mindset

(modular architecture helps fine-tune the
performance based on the developer’s needs [1])

Base instruction set: Integer
Extended instruction set: the rest

Extension Description

l Integer

Integer Multiplication and Division

Atomics

Single-Precision Floating Point

Double-Precision Floating Point

General Purpose = IMAFD

ol o IS m e 2

16-bit Compressed Instructions

Non-Standard User-Level Extensions

Xext Non-standard extension “ext”

The most common
extensions: IMAFDC
(also known as GC)

There are also
a lot more than
just IMAFDC .

Base Version Status
RVWMO | 2.0 Ratified
RV 321 2.1 Ratified
RV641 2.1 Ratified
RV32E 1.9 Draft
RV128I | 1.7 Draft
Extension | Version Status
M 2.0 Ratified
A 2.1 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Counters | 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
5 0.2 Draft
V 0.7 Draft
Zicsr 2.0 Ratified
Zifencei | 2.0 Ratified
Zam 0.1 Draft
Ztso 0.1 Frozen

13



https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

2. RISC-V vs. Cyber-security (5/8) RISC-V ISA

To support an Operating System (OS), the ISA has to support the OS stack
or the M-/S-/U-mode.

RISC-V privileged Different scenarios of utilizing the OS stack:
architecture: Application Application| [Application Application| [Application| |Application| |Application
SRS T |
Level Name Abbr. SBlI SBI
— SEE Hypervisor
0 User/Application U
1 Supervisor S HEE
Reserved
3 Machine M
RISC-V ISA not only supports the OS stack,
but also provides a privileged architecture [2].
Supported Levels Modes
1 M — Better security scheme by having the hardware
2 b recognize different codes executed at different modes.
3 M,S, U
e 14



https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

A typical
C-to-
target

scenario:

Linker Libraries
¢.g. arm-none-eabi-ld And Linker

C-source
file

. : Tool-chain
Compiler

¢.g. arm-none-eabi-gcc

!

“Object” file

=

Script file

(=

Debugger
¢.g. arm-none-eabi-gdb

i

Debugging utility
e.g. openocd

Programmer/Debugger ﬁ

Target system hardware

Program file

-

Programming utility
e.g. openocd

&=

RISC-V toolchain and its ecosystem [3]:

Applications
Distribution | | Debian Busybox Gentoo OpenEmbedded
Compiler Clang/LLVM GEC
System library newlib glibc
OS kernel Proxy kernel Linux kernel
Implementation || Rocket || BOOM ||| Spike || QEMU || Verilator || Angel
Hardware Simulation / Emulation

Three most important tools:
GCC: (cross C compiler) make a C code into

assembly code

LD: (linker) links standard libraries into the
build; also links between multiple C files

GDB: (debugger) debug the
hardware/simulator/emulator

15



https://github.com/riscv-collab/riscv-gnu-toolchain

2. RISC-V vs. Cyber-security (7/8) RISC-V security

Power and EM Analysis Attacks Lightweight Crypto Symmetric/Asymmetric
Branch Prediction Timing Channels SIKE Elliptic Curves
Intra-core Side-channel Detection Techniques TRNG DICE

Side-channel Prevention

Cryptographic Primitives

Reduce Attack Surface Tagged Memory
SMPC CFI Memory Isolation
Cryptography Side-channel Resist Memory Encryption and Authentication

ISA Security Extensions

Memory Protection

Covert Channels

Physical Access

Logic-locking

EM Fault Injection

Program Obfuscator and Churn Units

RTL Bugs

Hardware Trojans

Memory Protection

Crypto Engines

Hardware and Physical Security

Hardware-assisted Security Units

RISC-V Hardware and Architecture Security [4]

Security topics
that attract
attention in the
RISC-V
community.

16


https://arxiv.org/pdf/2107.04175.pdf

2. RISC-V vs. Cyber-security (8/8) RISC-V security

The top reasons for choosing RISC-V for Cyber-security

e For an opportunity to secure the Internet-of-Things (IoT): cybersecurity software is
ultimately ineffective. To truly address the problem, we need to address the issue at its
core: directly inside the SoCs.

e For price-sensitive applications: specific and limited (also usually repeated) tasks can
be solved cost-efficiently with a base core and a few specialized components.

e For an open approach to cyber-security: RISC-V's ecosystem has seen significant
growth over the past few years. A Rich and strong open-source community promises
equally rich and strong public libraries and open-source designs.

e For frequently discussed and addressed security issues: cyber-security hot topics
are discussed frequently at least once a month. They are hosted by the two work groups
of Cryptographic Extensions and Trusted Execution Environment (TEE) [5].

17
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3. Secure Boot for Trusted Execution Environment (TEE)
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3. Secure Boot for TEE (1/23) what is TEE?

Trusted Execution Environment (TEE) [6] provides:

1.Integrity:
2.Confidentiality:
3.Attestation:

safe.
A typical TEE setup:

Secure (trusted) vs. non-secure
(untrusted) worlds.

Barrier enforcer by: software AND

hardware.
All TEES need some sort of

hardware-assisted modules: Root-

of-Trust (RoT) and primitives.

Non-secure World

7
_App. ] (App.
i Operating )

P

i Enc. ] [

Secure World

the code and data cannot be tampered.
the application’s content cannot be read.
proof to a remote party that the system is

o

.

Enc:. |

System (OS)

Trusted

OS/Driver

> Software stack

N

2/

| Root-of-Trust | | HW Primitives | } Hardware-assisted

HW primitives (examples): cache flushing, cache partitioning, memory isolation, memory
encryption, keys management, bus access controller, enclave encryption, and so on.

19



3. Secure Boot for TEE (2/23) What is TEE?

Root-of-Trust (RoT) in theTEE:

Non-secure Secure « Root-of-Trust (RoT): the 1st verification at reset, the
(REE) (TEE) starting-point for CoT.
o Chain-of-Trust (CoT): a series of sighatures &

7 ]l certificates started from the RoT up to the Rich OS.
App.
: PP 1 ?Tmswd mx Secure boot guarantee:
Rich OS App Enclave } e All TEE-related assets (code,
CP Rich OS Trusted )_ prog. & sign. trusted OS/drivers, hardware
- i N rimitives) are installed and at the
bootloader | \ OS/drivers | el O dnves p | )
i . & s Initial states (as expected by
2 ) Trusted LR AR .
bootloader N designers).
" Trusted bootloader | o Means: EVERYTHING is
@ RO CEERE s ey signature checked, and EVERY

\ - /N i / sensitive data are immutable or
Processor + On-chip storage Off-chip storage held in isolation.

App. [ Enclave

/

A

&

20



3. Secure Boot for TEE (3/23) TEE vs. secure boot

TEE is just an isolated environment. It isn’t, and ~ REE - TEE
’ 5 R ﬂ 3
shouldn’t be, the Root of Trust (RoT). L App.] [ el Exc ] [ Enc.
( 2

i Operating ) Trusted

System (OS) J))\\ OS/Driver 3

Most TEE models have to assume:
e The hardware is trusted and securely booted.
e The bootloader is “bug-free,” and the RoT has not

been tampered. B
[[ Root-of-Trust] [ HW Primitives ]]

To achieve this, we can:
1. Use TEE processors for the secure boot. Hardware

2. Use extra hardware or third-party IPs.
3. Other approaches such as dynamic RoT without reset.

Bury root keys deep under layers of obscurity just increase the cost for attackers. The attack

surface still exists as long as the secure boot process and RoT are still in the TEE system.
21



3. Secure Boot for TEE (4/23) TEE implementations

Intel Core(s)

(App ] (App) | Appj\

: Operating System (OS)j

Machine code

e Many TEE models /
VM1 VM2

}U-mode were proposed:
different set goals,

different resources,

} H/S-mode

}M'm"de and different
developing

\:MMU ] [PRM /

Intel SGX
Intel SGX [7]: aiming
for conventional PCs

e Most closed-source
TEESs are fine-tuned

mindsets.

ARM Processor(s)

(App ] L_App

[ Enclave\

: Operating System (OS) ]

[ Monitor

Trusted Firmware (TF)

AMD Secure Processor(s)

———————————————————————————

| (App ] (App ] (app) (App ]\ } U-mode

Operating :E Operating '
[System (OS)] [System (OS) B-InGE

____________________________

Hypervisor } H-mode
SEV Firmware }M-mode

QES Engine] [Key Managemey

AMD SEV
AMD SEV [9]: aiming for
server’'s cloud computing

} U-mode
} H/S-mode

j } M-mode

for their specific
processors.

[ [Caghe ] [MMU] (GIC] [TZPC

~

\controller

-

ARM TrustZone

ARM TrustZone [8]: aiming for
smartphones/embedded-systems

L


https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf

3. Secure Boot for TEE (5/23) TEE implementations

RISC-V Processor(s)

RISC-V Processor(s)

-

_App ]| App ]

i Drivers ] [ Drivers ]

MultiZone TEE

=

_App

[ Drivers

} U-mode

} M-mode

\[ L1 Cache ] [PMP] /

Sanctum
[11]: similar
approach
with Intel
SGX, but for
RISC-V
processors

(Agp | | App | [Enclave] [Enclavej\ }U-mode
[ Operating System (OS) } H/S-mode
Security Monitor (SM) } M-mode

\[LICache] (MMU | ( TLB | P

'] ==] =m)

Operating System (OS) [ Tag Root]

>y

Machine Code

Hex-Five MultiZone
MultiZone [10]: RISC-V Processor(s)
lightweight TEE, (= .
multi-purposes, s
aiming for I
embedded/loT
applications

R

MPU

[ Tag Engine J

A

TIMBER-V

Sanctum

} U-mode

} S-mode

: } M-mode

entire system 23

TIMBER-V [12]:
similar approach with
Intel SGX, but uses
strong hardware
enforcers based on
“Tag’-ID across the



https://hex-five.com/

3. Secure Boot for TEE (6/23) TEE implementations

RISC-V Processor(s) RISC-V Processor(s)
(App ] [Enclave] [ App ] \ } U-mode

4
Operating ] [ Runtime | ([ Runtime | }S-mode

(App ) [ App | | | Enclave | Enclave:\ }U-mode

[ Operating || Eyrie ||[ Eyrie S-mode | (L System (OS) Enclave Enclave |
 System (OS) J | | Runtime ) | { Runtime | 6 )
4 [Enclave (SM)J Firmware }M—mode
Security Monitor (SM) | } M-mode | : :
: E | Enclave Execution (SP1) | Cache
\Ll Cache || MMU | TLB || PMP ) \ (B Access Contol 5721 Partitioning(SP?»y
Keystone CURE
Keystone [13]: Is not a specific CURE [14]: a complete opposite with
type of TEE, but a modular TEE Keystone, this TEE model requires a total
framework (try its best to be hardware modification across every
hardware-agnostic) architectural level (but provides strong
Isolation with multiple types of enclaves)

24



3. Secure Boot for TEE (7/23) TEEs comparison

TEE implementations comparison regarding the
security-related features; @, ©, and O rank the performance
from best/supported to worst/not-supported, respectively.

tel | ARM | AMD | RISC-V e Choose Keystone for the
9 Ol R WL ®wnzZzed RO _ _
Q 5 & S\g § RS 522 ¢ software implementation:
32PN HE BOREEEF
s = = 8 » Z S5 B 2 m Open-source: modular
¢0]
S TEE framework, versatile
Open-source OO0 @ O0l0Oe ® O|]OO0O0|0Oe e e O usage.
Enclave Userspace (@ @ @ € O O O OO OO0 e @® O @
type Kernel-space 1O O O O/®o ®© ®© ©6/®© ®© @® OO @ O u Kernel-space enclave:
Adversary ~ oftware 10 € 0 ©/0066 0000000 better isolation in general.
Physical 0 060 O00 O 00066 OO0 0o _
SCA Cache-based [0 O O 0|0 © © ©|0O O Cl@e @ O @ @ m Hardware-agnostic: does
resilience Ctrl-channel |O O O O|O @ O O|O O O|® @ O ® © not requi ial
DMA-based [0 0 0O 0O/0 0 @ €00 O|®@ 0O @O @ quire any specia
Secure enclave-to-peripheral O O O O|© © © ©|O O O/®@ O O O @ custom-built features to
Small trusted firmware @ O O ©|O © O O/ ® ®© ©€|/|0 © ®@ © © ]
Hardware modification| O ® ® @O @ ® |0 O O/®@ O O @ O function.
Resource management O © © O|® © ® ©|®© © € O ©O © © ©
Wide-range applications| O © © ©|® © © © ®© ®© ®€ O O O @ ©
High expressiveness O @ © €/ ®@ © © ¢ © ®© ® O © ® O ©
Low porting efforts| O @ @ ©|O © © ©|®© ®© 0O ® O ® O 25



3. Secure Boot for TEE (8/23) Propose architecture

Propose: A secure boot process with RoT for TEE

_______________________________________

REE / TEE

| Rocket/BOOM processor(s)

Isolated

I
' sub-system

' IBex core . .
. [ Instruction cache | i

Isolated Bus (IBus)

| L_Datacache | [ Instruction cache | RAM | [BootROM | [ PUF | [ RoM/0OTP/Fiash (1)
her———— e T e S -
System Bus (SBus)
1
L2 cache
TileLink to AXI4 Memory Bus (MBus) Peripheral Bus (PBus)
[ | | L

PCle controller

TileLink to AXI4

2. Hidden MCU for the flexible boot program

DDR controller

GPIO | | Boot ROM

EC/Ed-DSA

AES-GCM-128/256

SPI (MMC)

UART

SHA3-512

HMAC-SHA2 RSA-1024

SPI (Flash)

Utility group

AEAD | | ChaCha20 | | Poly1305

TRNG

Crypto-core group

------------------------------------------------------------------

the proposed
architecture:
1. Root key
Installed at the
time
manufactured.

3. Hierarchy-bus: TEE processors cannot access RAM/ROMs in the isolated domain (BUT

the isolated core can access ALL)

26



3. Secure Boot for TEE (9/23) Secure boot process

( :n Not stored anywhere O Not stored in chip, but available in public O OS-memory, public domain

l\ :n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Oft-chip SD-card, public domain

Compute off-chip Compute on-chip

1££ Manufacturer GJ Root Key Device/Chip Egﬁgl Program (K) The proposed
I (M) (R) Jons (D) BB (M-mode) ,
b - keys scheduling

*Note: the Sk

RSA:gen EC:gen EC:gen TRNG+PUF shovld be elesn
2048b or l 256b 256b I EC after signed. SC h e I I l e .
2 r: % r:, = ’% wed”| EC:gen
\

4096b
256b

RSA. » RSA:sign | }\ o EC:sign " » EC:sign
T\ %
M=
L —
X \/_O/" EC:sign
M(’cn. R;cn. D(’cn. KCcn‘
I, X \
\
|' prog. =y prog.
\ : § :
- / |
vo|sign. , . T sign.
S Verify & sign & sign
sBL & load ZSBL FSBL BBL
u J U J J
v s i
Done by isolated processor Done by TEE processor(s) 27

Done offline




l nN
N\

l\ /n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Off-chip SD-card, public domain

3. Secure Boot for TEE (10/23) Secure boot process

O OS-memory, public domain

ot stored anywhere

O Not stored in chip, but available in public

Compute oft-chip

Compute on-chip

' Root Key Device/Chip |—§2§g%2 Program (K)
\Y (R) 0 i (D) @%{% (M-mode)

EC:gen EC:gen TRNG+PUF it
2048b or 256b 256b I__ EC: after signed.
4096b T~ . - seed”] EC:gen

! Sk BN Pr ¢ { Sp ! 256b
RSA:sign | l\ » EC:sign ] » EC:sign
T\
M= %
L —
X @_o 4 EC:sign
R;cn. D(‘cn. K(‘an
l, X \
\
II prog. prog.
I
- sign. |/ > sign.
S el Verify % giien
sBL & load ZSBL FSBL 3 BBL
J U VRN ¥ |
v s i
Done offline Done by isolated processor Done by TEE processor(s)

Step-by-step

e Step 1: The
manufacturer
plays the role of
root CA (public
key is well-
known &
certificate is self-
signed)

28



l\ i Not stored anywhere

,-

3. Secure Boot for TEE (11/23) Secure boot process

O OS-memory, public domain

RSA:gen

2048b or

4096b

RSA:si

j EC:gen
7/

Compute oft-chip

Root Key

O Not stored in chip, but available in public

Device/Chip

RSA:sign

~

. = |
‘\ @—O /'

-

seed

l\ /n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Off-chip SD-card, public domain

Compute on-chip

|—§2§g%2 Program (K)

| o028l (M-mode)

*Note: the Sk
should be clean

256b

EC:gen TRNG+PUF :
256b l L. E C.'gen after signed.

\ 4

EC:sign

EC:sign

=

EC:sign

R
prog.
> sign.
& sig
ZSBL FSBL ~ ° ™ BBL
e e J v ¥ |
Done offline Done by isolated processor Done by TEE processor(s)

Step-by-step

o Step 2:
manufacturer
generate root SR
& PR also offline,
and then uses Sm
to sign on the PR
and secure
BootLoader (sBL)

sSBL Is stored in the
same place with PR,
the isolated ROM.

29



3. Secure Boot for TEE (12/23) Secure boot process

O OS-memory, public domain

l\ i Not stored anywhere

,n

~N

o= 1}

Manufacturer

RSA:gen

2048b or
4096b

RSA:si

O Not stored in chip, but available in public

Compute oft-chip

Root Key
(R)

g

EC:gen
256b I
7

v

Device/Chip

N - /
RSA:sign | l\

EC:sign

Compute on-chip

l\ /n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Off-chip SD-card, public domain

|—§2§g%2 Program (K)
010101

|[201010 (M-mode)

EC:ger TRNG+PUF

L> EC:gen

seed

256b

EC:sign

*Note: the Sk
should be clean
after signed.

7 N
;| —BN
L = |\
X @_o 4 EC:sign
M(’cn. R;cn.
l, X
II prog prog.
- sign. > sign.
B - & sign
sBL FSBL BBL
7N J \u J
v o i
Done offline Done by isolated processor Done by TEE processor(s)

Step-by-step

e Step 3: (still
offline) the
manufacturer (or
the provider)
generates the pair
SD & PD.
Then have the root
secret key
generates the
DcCert. and sign the
ZSBL.

30
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- 3. Secure Boot for TEE (13/23) Secure boot process

n Not stored anywhere

.~
(
N

Compute oft-chip

O Not stored in chip, but available in public

O OS-memory, public domain

/n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Off-chip SD-card, public domain

Compute on-chip

Manufacturer Root Key Device/Chip E&égog Program (K)
(M) (R) o IhR. (D) @%{% (M-mode)
RSA:gen EC:gen EC:ger TRNG+PUF gl
2048b or l 256b I I__. : after signed.
4096b > e = EC:gen
> Sk BW P 256b
RSA:si » RSA:sign l J\ EC:sign EC:sign
T\
AEEN %

. =1
‘\ C\&—O /'

R -

EC:sign

M(‘cn. R:cn,
l, X
/

| | prog.
- sign.

B il & sign

sBL FSBL BBL
J U VRN ¥ |
v s i
Done offline Done by isolated processor Done by TEE processor(s)

Here is the RoT
SD is stored In the
iIsolated ROM.
/SBL & PD could
be in a flash
outside.

The very first task
of the isolated
Processor is:

o Verify the ZSBL
signature by
using the PR

— this allows future
updates on the

ZSBL.
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3. Secure Boot for TEE (14/23) Secure boot process

O OS-memory, public domain

l\ i Not stored anywhere

l\ /n On-chip ROM, isolated domain O On-chip ROM or off-chip flash, public domain O Off-chip SD-card, public domain

RSA:gen

2048b or
4096b

RSA:si

O Not stored in chip, but available in public

Compute oft-chip

Root Key
(R)
EC:gen
256b I
7 O’ N
1 Swr /| l Pr §

v

RSA:sign

o

Device/Chip
(D)

EC:gen
256b l

Compute on-chip

|—1-.01010

010101

101010
010101

@010

TRNG+PUF

[

seed

EC:gen

256b

EC:sign

EC:sign
~ e g
M(‘cn. R(‘cn‘ D(‘cn.
o
7,
/
/
| prog. prog.
\ 2 .
™ sign. > sign.
N
S Verify
sBL & load ZSBL
TN
v o &

. =1
‘\ @—O /'

\ 4

EC:sign

Program (K)

(M-mode)

*Note: the Sk
should be clean
after signed.

Done offline

Done by isolated processor

Done by TEE processor(s)

Step-by-step
e Step 4: (now on-
chip) the isolated
processor executes
the ZSBL and:
o Use TRNG to
seed EC-genkey
& create the pair
of SK & PK
o Load the FSBL
(hash & sign) to
the public RAM.
o Wakes up the
TEE processors
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3. Secure Boot for TEE (15/23) FPGA result

Build Reports of the Proposed TEE SoC in Virtex-7 FPGA (XC7VX485T)

BOOM | Rocket | IBex* TRNG B2 SHA3 AES Total
multiplier sign
Logic 66,525 | 24,817 7,465 198 2,305 5,344 8,881 2,710 149,765
Slices Register 44,520 12,312 3,253 21 3,767 4,630 2,825 2,860 99,411
Total 111,045 | 37,129 9,793 219 2,465 5,344 9,013 2,842 249,176
BRAM 62 63 12 0 4 0 0 0 283
DSP block 36 15 4 0 16 0 0 0 71
FPGA util. (%) 22.86 7.64 2.02 0.0451 0.51 1.1 1.86 0.59 51.3
Area Rocket (%) | 299.08 100 26.38 0.59 6.64 14.39 24.28 7.65 671.11
overhead | Total (%) 44.57 14.9 3.93 0.0879 0.99 2.15 3.62 1.14 100
*Including the isolated sub-system
e Build with default configuration: o L2 cache: 512-KB.
o ISA: RV64IMAFDC. o Isolated sub-system: included.

o Cache: 16-KB for inst. & 16-KB for data. o PCle: excluded. 23




3. Secure Boot for TEE (16/23) VLSI result

Synthesis results of the Proposed TEE SoC in ROHM-180nm.

BOOM | Rocket | IBex* | TRNG 25319 SHA3 AES Total
multiplier sign
mm? 18.745 6.674 2.642 0.004 1.489 0.631 0.651 0.413 63.164
Area mm? (%) 29.68 10.57 4.18 0.0063 2.36 1.00 1.03 0.65 100
NAND2-gate | 362,038 | 94,663 | 25,508 268 26,464 25,380 26,130 16,325 666,957
mW 1,152.9 | 332.1 45.3 0.133 154.6 65.8 31.8 37.5 2,121.3
power mW (%) 54.35 15.66 2.14 0.0063 7.29 3.10 1.50 1.77 100
*Including the isolated sub-system
*Note: the used tools are Cadence’.
e Build with default configuration: o L2 cache: 512-KB.
o ISA: RV64IMAFDC. o Isolated sub-system: included.

o Cache: 16-KB for inst. & 16-KB for data. o PCle: excluded. 2




3. Secure Boot for TEE (17/23) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Design Registers LUTs
Overhead (+%) | Overhead (+%)
This Baseline: Dual-Rocket 24,624 74,258
work + IBex! +3,253 (13.21%) | 49,793 (13.19%)
(2021) + crypto-cmfes2 +14,103 (52.27%) | +19,883 (26.78%)
+ IBex! + crypto—cores2 +17,356 (70.48%) | +29,676 (39.96%)
TUS Baseline: Dual-Rocket 24,624 74,258
(15, 16] + CAU +6,722 (27.30%) | +27,170 (36.59%)
2 O 19) + KMU +3,344 (13.58%) | +29,529 (39.77%)
+ CAU + KMU +10,066 (40.88%) | +56,699 (76.35%)
Baseline: Single-lowRISC 55,443
HECTOR-V | (vith RI5CY +8,205 (14.80%)
[17] with Remus N/A +11,581 (20.89%)
(2021) | with Frankenstein +13,303 (23.99%)

'Including the isolated sub-system.
’Including SHA-3, AES, Ed25519, and TRNG.
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3. Secure Boot for TEE (18/23) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Design Registers LUTs
Overhead (+%) | Overhead (+%)
Baseline: Dual-Rocket 24,624 74,258
+ IBex! +3,253 (13.21%) | +9,793 (13.19%)
bto-cores? +14,103 (52.27%) | +19,883 (26.78%)

ITUS: secure boot by all hardware modules.

ITUS

This work: crypto-cores just for accelerating

[15,16] d== M1 the boot flow, not a hard requirement.
(2019) /' | | CcAU 4+ KMU 10,060 (30.98%) | +56,699 (/6.3506
Baseline: Single-lowRISC 55,443
RECTORV | with RI5CY +8,205 (14.80%)
171 | with Remus N/A +11,581 (20.89%)
(2021) with Frankenstein +13,303 (23.99%)

'Including the isolated sub-system.
’Including SHA-3, AES, Ed25519, and TRNG.
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3. Secure Boot for TEE (19/23) Comparison

. . hther secure-boot RISC-V-based TEE SoCs.
Even including crypto-cores,
. Overhead (+%) | Overhead (+%)
Thi Baseline: Dual-Rocket 24,624 74,258
work + IBex! +3,253 (13.21% +9,793 (13.19%
(2021) crypto-cores +14,103 (52.27%) | +19,883 (26.78%
+ IBex' + crypto-cores +17,356 (70.48%) | +29,676 (39.96%
TUS Baseline: Dual-Rocket 24,624 74,258
+ CAU +6,722 (27.30%) | +27,170 (36.59%)
[15, 16] NV 43 341 30, 199 599 (39 779,
(2019) - W CAU + KMU +10,066 (40.88%) | +56,699 (76.35%
Baseline: Single-lowRISC 55,443
HECTOR-V | (vith RI5CY +8,205 (14.80%)
[17] with Remus N/A +11,581 (20.89%)
(2021) | with Frankenstein +13,303 (23.99%)

'Including the isolated sub-system.

’Including SHA-3, AES, Ed25519, and TRNG.
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3. Secure Boot for TEE (20/23) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Desion Registers LUTs

5 Overhead (+%) | Overhead (+%)

Baseline: Dual-Rock

+aIS§ ;)r(lle uakRocket THECTOR-V: uses TEE processors to
Oto-cores? boot, no crypto accelerators.

+ IBex ato-cores” | (they are not the same idea, but compared

ITUS Baseline: Dual-Rocke€™sd hased on the secure boot’s hardware
[15, 16] +CAU requirements)

2019 + KMU _ _
(2019) L CAU U This work: use I1Bex to boot, could

Basglife: Single-lowRIS( excluded the crypto-cores.

fith RISCY
with Remus N/A +11,581 (20.89%)

with Frankenstein +13,303 (23.99%)
'Including the isolated sub-system.
’Including SHA-3, AES, Ed25519, and TRNG.

ECTOR-
[17]
(2021)

O ,2\U T.0U /0




3. Secure Boot for TEE (21/23) Comparison

Comparison with other secure-boot RISC-V-based TEE SoCs.

Design Registers LUTs
Overhead (+%) | Overhead (+%)
This Baseline: Dual-Rocket 24,624 74,258
work + IBex! +3,253 (13.21% +9,793 (13.19%
(2021) + crypto-cores +14,103 (52.27%) | +19,883 (26.78%)
+ IBex! + cg#to-cores’ | +17,356 (70.48%) | +29,676 (39.96%)
: b Pual-Rocket 24,624 74,258
16722 (27.30%) | 427,170 (36.59%
2 O 1 9 + KMU +3,344 (13.58%) | +29,529 (39.77%)
+ CAU + K +10,066 (40.88%) | +56,699 (76.35%)
HECTOR-V +8,205 (14.80%)
[17] N/A +11,581 (20.89%)
(2021)

'Including the isolated sub-system.
’Including SHA-3, AES, Ed25519, and TRNG.
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3. Secure Boot for TEE (22/23) Comparison

Comparison with recent security-driven RISC-V-
based SoCs, regarding the security and flexibility features; @,
0, and O rank the performance from best to worst, respectively.

CURE
[18]

HECTOR-V

[17]

WorldGuard
[19]

ITUS
[15, 16]

This
work

Open-source

&

Secure boot
Flexible boot process
TEE & secure boot iso.
Exclusive TEE processor

® O

e e

Exclusive secure storage
Secure I/0O paths
Crypto. accel.

SCA resilience
Hardware cost
High expressiveness
Low porting efforts

ORVE N JION NOMNCECON R I@)

ON BN HON N M NON

wAVE EVIVEVEOIVEON

| HONONOI NON JION NON @

 BCEVHEON NON JIoN N N

Achieved:
e Secure boot

process with RoT
for TEE.

Flexible boot flow.
Complete isolation
between the boot
process and the
TEE domain.
Has exclusive
storage for boot
program only.
Cryptographic
accelerators are

available. 40



3. Secure Boot for TEE (23/23) Summary

Key Achievements

1. TEE-HW with cryptographic accelerations: custom hardware was made for
accelerating the TEE boot flow.

2. TEE-HW with isolated RoT: the heterogeneous architecture was proposed to isolate the
RoT from the TEE side.
m The manufacturer and root keys are stored at the time manufactured.
m The ability to make a secure direct connection from the isolated bus to outside

peripherals.

m The secure boot flow Is executed by the isolated environment.
m The bootloader program is flexible and can be updated.
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4. Cache Side-channel Attack (Spectre) on Out-of-Order (O00O) Processors
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4. Spectre attack in OoO Processors (1/12)

Spectre - Cache side-channel attack
Target: RISC-V Out-of-order BOOM
First variants:

e Spectre v1: Bound Check Bypass

e Spectre v2: Branch Target Injection

BOOM /o Branch Predictor UniP

| — e Speculative Execution

[.1 Cache i e Caching

---------------- ! o ..
\_ _J

BOOM suitable for Spectre

Cache memory

43



4. Spectre attack in OoO Processors (2/12)

Speculative execution example:

User input Process
a=1 => Execute B
q=2 —=> Execute B Pattern history table
Branch histor W —> Prediction
a=3 => Execute B Y ‘
0110
bits
=> Execute B

e | a4



4. Spectre attack in OoO Processors (3/12)

Typical attack strategy:

Victim
1. Setup processor cache, for example, fill or flush
all the cache lines, as in timing attacks i Sendirein
J [ Spectre gadget ]1-—----~--§ \ paraineter /
approaches. i . | [ Sendrogue )
o parameter
2. Force mis-speculation in victim code to leak
; ] §§Leakage
secret into a side-channel e ]
_ b [Obtain secret from]
3. Attacker recovers secret from side-channel effect y i cache effect

In the cache (usually the access load time).
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4. Spectre attack in OoO Processors (4/12)

Implement RISC-V processor

e BOOM core: exploited

e Roacket core: not exnloited
92

Number of cycles

90

88

o
[=)]

(0 0]
=

co
WS

78

76

50 100 150

ASCII Value

200

Observe cache accessing time after

an attack attempt

250

char(S)
char(e)
char(c)
char(r)
char(e)
char(t)
char( )
char(K)
char(e)
char(y)

---------------------------------------

Data cache Instruction cache

E Rocket/BOOM processor(s) E

guess_char(hits,score,value) 1.(3, 83,
guess_char(hits,score,value) 1.(9, 101
guess_char(hits,score,value) 1.(7. 99,
guess_char(hits,score,value) 1.(8, 114
guess_char(hits,score,value) 1.(8, 101
guess_char(hits,score,value) 1.(9. 116
guess_char(hits, score,value) 1.(10, 32
guess_char(hits,score,value) 1.(8, 75,
guess_char(hits,.score,.value) 1.(8, 101
guess_char(hits,score,value) 1.(8, 121

Attack log (success case)



4. Spectre attack in OoO Processors (5/12)

Software mitigation method
e [ence instructions

e Speculation Load Hardening

1f (x < a size)

Properties: return

e Modify to strengthen victim program alx];
else

e Require to re-compile source code

return ‘07’;
e Affect on performance Original target for spectre attack



4, Spectre attack in OoO Processors (6/12)

FALSE

X <a_size

TRUE

/ Return a[x] / / Return ‘\0’ /

Original code

: FALS
X <a_size >¢

TRUE

/ fence r,rw / / return ‘\O’/
/eturn ‘a[x/

Fence Instructions
=> Force in-order execution

48



4. Spectre attack in OoO Processors (7/12)

Performance measure

No mitigation Mitigation using fence
- Normal execution cycle: 210  Normal execution cycle: 242 - 290
» Performance loss: 15 — 43%

49



4. Spectre attack in OoO Processors (8/12)

Hardware mitigation method: modifying MSHRs

e MSHRs: miss status holding registers

e Located in The Load/Store Unit (LSU)

e Handling data forwarding when mis-speculative events

=> Delay the data forwarding when mis-speculative

D-Cache MSHR Lower level
p \ memory

50



4. Spectre attack in OoO Processors (9/12)

Secure Boom v2 & Spectre v2

verilator$ .fsimulato

e Config: Single core RISC-V MediumBoom

tienla@tienla-Ubuntu:~/Work/teefhardware/chipyardfsims/
r-chipyard-MediumBoomConfig spectrev2.riscv

This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag
rbb_enable=1.

Listening on port 43925

[UART] UARTO is here (stdin/stdout).

e Verilator software simulation

. Branch Target Injection - Spectre Attack

. I [ 0x0xB0002768] | sceret_char(S) | guess_char(hits,score,value) 1.

® Secure Boom' mOdIfy MSHRS for SpeCtre m[Ox0xBOBO2769] | sceret_char(e) | guess_char(hits,score,value) 1.
m[Ox0xBOBO276a] | sceret_char(c) | guess_char(hits,score,value) 1.
m[@x0xB000276b] | sceret_char(r) | guess_char(hits,score,value) 1.
m[oxox8000276c] | sceret _char(e) | guess _char(hits,score,value) 1.
m[oxox8000276d] | sceret _char(t) | guess _char(hits,score,value) 1.

resistant

(sl lesleslesles]

X
Boom v3 & Spectre Y

ienlagtienla-Ubuntu:~/Hor
.fsimulator-chipyard- Smallauomicnflu 'pPrtrcuﬂ,rl

This emulator compiled with IJTAG Remote Bitbang client.

enable=1.

istening on port 33129

[UART] UART® is here (stdin/stdout).

ranch Target Injection - Spectre Attack

Secure Boom v3 & Spectre v2

;[verilators . /simulator-ch

rdware fchipyard/sims/verilator

tienla@tienla-Ubuntu:~/Work/tee/hardware/chipyard/sims
ipyard-MediumBoomConfig spectrev2.riscv

This emulator compiled with JTAG Remote Bitbang client. To enable,
_enable=1.

Listening on port 34343

[UART] UARTO® is here (stdin/stdout).

To enable, use +jtag_rbb
use +jtag_rbb

[0x0xB80002768 ]
[8x0xB0802769 ]
[ox8xBE00276a )
[6xBx8000276b]
1[BxBxB880276cC ]
[ex8xB000276d ]

sceret_char(s)
sceret_char(e)
sceret_char{c)
sceret_char(r)
sceret_char(e)
sceret_char{t)

guess_char(hits,score,value)
guess_char(hits,score,value)
guess_char(hits,score,value)
guess_char(hits,score,value)
guess_char(hits,score,value)
guess char(hits,score,value)

Branch Target Injection - Spectre Attack

m[Ox0Xx80002768 ]
m[@x0x80002769]
m[Bx0xBOBO276a ]
m[@x0x8000276b]
m[Bx0xBOBO276C]
m[@x0x8000276d ]

sceret _char(s)
sceret_char(e)
sceret char(c)
sceret_char(r)
sceret _char(e)
sceret_char(t)

guess char(hits,score,value) 1.
guess_char(hits,score,value) 1.
guess char(hits,score,value) 1.
guess_char(hits,score,value) 1.
guess char(hits,score,value) 1.
guess_char(hits,score,value)

(SRR R




4. Spectre attack In OoO Processors (10/12)

e Benchmark riscv-tests

e The performance ratio of Boom-v2 is setas 1.0

dhrystone.riscv median.riscv mm.riscv multiply.riscv qgsort.riscv rsort.riscvspmv.riscv spmv.riscv wadd.riscv

1.600

1.400

1.200

1.000

0.800

0.600

0.400

0.200

0.000

m Boom-v2 mBoom-v2(S) mBoom-v3 mBoom-v3 (S)



4, Spectre attack in OoO Processors (11/12)

e MSHRSs resources utilization

Configuration LUT FF
Normal MSHR 1926 1120
Secure MSHR 1980 (2.8%) 1124 (0.4%)




4. Spectre attack in OoO Processors (12/12)

Spectre on Prevention
RISC-V Detection
Boom Software approach Hardware approach(*)
Idea o Analyse hardware * Fence instruction
Research performance counter « Speculation Load Hardening « Modifying MSHRs
Use machine learning (Index masking)
High accuracy and
: simple (>95%)  Strengthen victim program * Low performance
Benefits _ _ overhead
Low performance « Simple to implement
overhead (~2%)
Need to find action » Require to re-compile victim « Complicated.
after detection code * Time consuming to
Drawbacks . :
Need to re-create model < High performance overhead: 15- verify and develop.

for new threat

(*) Currently on research stage

43%
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D.

Prevent Correlation Power Analysis (CPA) with Random Dynamic
Frequency Scaling (RDFS)
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5. Prevent CPA with RDFS (1/10)

A Sound
\{I’iming : ',-'4P0wer consumption Side'Channel attaCkS:
i Exploit unavoidable side-channel
Cryptographic device _ .. :
information in cryptanalysis.
_Input l Cryptographic _Output _ - power Analysis attacks:
Plain_txt/Cipher_txt algonthm Cipher_txt/Plain_txt _ _
Using Power consumption or
TSecret key Electromagnetic radiation.
¥ f )

Heat éElectromagnetic radiaton

A cryptographic device leaks
side-channel information
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5. Prevent CPA with RDFS (2/10)

CPU Cores
[I
|

Core #1
A4

System bus

v v
Control bus Peripheral bus

v

Boot
ROM

|

v
CLINT

PLIC

Debug
unit

v

v

2
SPI

UART

GPIO

Crypto.
Accelerator

Example of Cryptographic SoC

Countermeasures for Cryptographic SoC:
EXisting techniques are not suitable:

- Masking: Reduce performance, Increase
power, area.

- Hiding: Huge hardware overheads.

= Proposed ldeas:

- Randomly scale the clock freg. of
Crypto.Acc. after each encryption/decryption.
- Only applied to the Crypto.Acc.

- Create as many Clock frequencies as
possible.
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5. Prevent CPA with RDFS (3/10)

: l
RocketTile XTAL 200MHz |
Rgcket > pTw A 4
ore MMCM
v _L Y I
L11$ L1DS Fsys = 50Mhz |
v L v
Tile bus
[
Y
System bus
¥ v v
MeB’::"V Control bus Peripheral bus
l I k B+ ; : ’ ’ :
TileLink to oot
Rois ROM CUNT SPI UART ||| SHA3 PRNG
¥
DDR Debug ED AES
controller bHe unit SR 25519 128/256

Unprotected Cryptographic SoC (TEE-Hardware)

Unprotected SoC (TEE-
hardware):
e 32-bit RISC-V SoC
e DDR Controller =
support Linux OS
e Crypto. Accelerator:
o AES-128/256
o SHA3
o ED25519
o PRNG
e Fixed system Clock:
Fsys = 50MHz




5. Prevent CPA with RDFS (4/10)

I

<—— Asynchronous Crossing RocketTile XTAL 200MHz |

\ 4

< Generated Clock Rocket
core 0| PTW MMCM #1
Y _I., F 50Mh l :_
sys = 7 L
Li's B0 v Fin = 800Mhz :
Tile bus |
[ |
A 4 I
System bus I
y ! ! |
MZTSOW Control bus Peripheral bus I
: I
¥ K ¥ ¥ ¥ ¥ ! |
ileLink to oot
|
Ax14 ROM CLUNT SPI UART SHA3 PRNG DRP Regs ;
DER b ED AES x I
Debug |
controller IS unit iz 25519 128/256 <I o8
XTAL 200MHz

— — >

Pulse
counter

Protected Cryptographic SoC with RDFS [21]

Protected SoC with RDFS:
e Add Clock Generation

peripherals (use Xilinx’s Clock
Manager IP)

Create > 219.000 frequencies
(in range from 50MHz to
100MHz)

Verify accuracy by Pulse
counter

Only applied to AES-128
module

Scale AES’s CLK after each
encryption
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5. Prevent CPA with RDFS (5/10)

Clock
| . Lock Detect
%ﬁﬂ?ﬁ% —*| Switch . |——= Lock
Circuit Lock Monitor|
l 8-phase taps + 1 variable phase tap
CLKINT —= 5 9 s 5
CLKIN2 — PFD |-| cP |+ LF |+|vcol=_] 00— cLKouTO
Fractional Divide b—= CLKOUTOB
LKFB ———— L — CLKOUT1
C ji I O1 b—= CLKOUT1B
= CLKOUT2
] | 02 = CLKOUT2B
] =~ CLKOUT3
03 b—= CLKOUT3B
- | 04 —= CLKOUT4
- I 05 —= CLKOUTS
—= CLKOQUTSE
—{H o
L] M CLKFBOUT
(Fractional Divide) p——+— CLKFBOUTB

ugd72 c2 02 020712

Fin x M
DXO;’

Ferkout, = i €(0,6)

Constraints for Kintex-7 devices:

Xilinx 7-Series' Mixed Mode Clock Manager [22] .

10MHz < Fin< 800MHz

10MHz < (Fin / D) <450MHz
600MHz < Fuvco < 1200MHzZ

1 <D <106 (integer)

2 <M < 64 (fractional with 0.125
Increment)

2 <o <128 (fractional with 0.125
Increment)

1 <016 <128 (integer)
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General
Routing

Clock

—=| Switch

Circuit

5. Prevent CPA with RDFS (6/10)

Lock Detect

——— Lock

Lock Monitor

l

CLKIN1 —
CLKIN2 -

CLKFB ———=

8-phase taps + 1 variable phase tap

o ¥
PFD [~| cP |- LF |+ vcol=_| 00— cLKouTO
Fractional Divide b—= CLKOUTOB
= CLKOUT1
— I o1 b—= CLKOUT1B
= CLKOUT2
— |— 02 b—= CLKOUT2B
] L~ CLKOUT3
03 b= CLKOUT3B
- ] o4 —= CLKOUT4
] | 05 —= CLKOUTS
—= CLKOUTE
. I_ 06
] M CLKFBOUT
(Fractional Divide) p———= CLKFBOUTB

ugd72 c2 02 020712

Xilinx 7-Series' Mixed Mode Clock Manager [22]

How to use:

e Generate all possible settings for
D,M,Oo

e Store setting values as C header
In your code

e Randomly select, apply a new
setting after each encryption or
decryption
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5. Prevent CPA with RDFS (7/10)

Implementation results on Kintex-7 FPGA

Original AES accelerator Protected SoC Hardware
Available | Unprotected SoC Overhead
Utilization | (%) | Utilization | (%) | Utilization (%) (%0)
LUT 101400 48989 48.31 3169 3.13 51047 50.34 4.20
FF 202800 39298 19.38 3307 1.63 39516 19.49 0.55
BRAM 325 30 9.23 0 0 30 9.23 0
MMCM 8 2 25 0 0 3 37.5 50
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t-score

157

10|

-10 |
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5. Prevent CPA with RDFS (8/10)

TVLA test #1

10|

‘ ft
{ n 'f‘ ll : 'r\"-\,
| ‘WJ" ‘ Y Wl \ L ’ [4 \J \ \| ‘ { \J‘q 'm;'1'|"'."‘\‘l'|'\h“‘(:! U!/ W

||o
M
\l L

; . ; ; . 45
200 400 600 800 1000
sample points

157

10 |

TVLA test #2
h
l
‘lm
H l A ”!’f
‘ [ ' ’ |'\'“'|),r] “",’H A ,\.ﬂ 'I'.ﬁ’,'u h !"w"l“".".'!
1. 'VU\V f}ﬂhn”ﬁ“’k‘“/;f" d
3
‘
0 200 400 600 800 1000

sample points

Test Vector Leakage Assessment (TVLA) results:
e RDFS with 219,412 clk freq. (50MHz - 100MHZz)
e Does not detect any leakage in 5 million power traces
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5. Prevent CPA with RDFS (9/10)

CPA attacks #1 #2 #3 #4
Target device Unprotected SoC Unprotected SoC Unprotected SoC Protected SoC
Operating mode Bare-metal Bare-metal Linux OS Bare-metal
rzgtrear-s Measuring method Single acquisition Averaging-64 Averaging-64 Single acquisition
Power model Hamming Weight model
Number of attacking traces 70,000 18,000 20,000 5 million
Attack Number of byte revealed 12/16 13/16 13/16 0/16
Results Min traces required 1,642 to 58,685 465 t0 7,613 1,650 to 19,591 N/A
Average traces required 28,683 1,928 10,175 N/A

Correlation Power Analysis (CPA) results:
e Cannot extract any byte of secret key with 5 million power traces
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5. Prevent CPA with RDFS (10/10)

DLSCA attack # #1 #2 #3 #4 #5
Target device Unprotected SoC Unprotected SoC Unprotected SoC Protected SoC Protected SoC
Operating mode Bare-metal Bare-metal Linux OS Bare-metal Bare-metal

Measuring method

Single acquisition

Averaging-64

Averaging-64

Single acquisition

Single acquisition

Para-
meters
Nl.Jr.nber of 60,000 15,000 17,000 1,000,000 60,000
profiling traces
Number of 12,000 3,000 3,000 100,000 12,000
attacking traces
Attack Number of byte revealed 16/16 16/16 9/16 13/16 0/16
Results Min traces required 4,231 805 2,022 45,924 N/A

Deep Learning based Side Channel Attacks (DLSCA) results:
e Extremely powerful, can break RDFS countermeasure

e Require 16.67 times number of profiling traces
e Require 8.33 times number of attacking traces
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Conclusion (1/1)

Keys takeaway

. RISC-V is an opportunity to secure the lIoT and is friendly with price-sensitive applications.
It Is an open approach to cyber-security with a solid and rich open-source community.

. A Trusted Execution Environment (TEE) is the formal way to do the trusted vs. untrusted
execution domains. However, TEE should not handle the Root-of-Trust (RoT) due to
security concerns. Therefore, a platform that can provide a secure boot process with RoT
utterly inaccessible from the TEE processors after boot is necessary.

. RISC-V Out-of-order Processor has been proved vulnerable against cache side-channel
attack (Spectre). Fortunately, detection and mitigation methods have been studied and
Implemented. Our approach for a secure MSHR (miss status holding register) has
demonstrated a low-performance loss and small resource utilization solution.

. Power Analysis attacks are powerful tools to break the security of cryptographic devices.
Using RISC-V architecture, designers can easily apply suitable countermeasures to improve
the system’s resistance against these kinds of attacks. 67
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