
1

RISC-V Computer System

Designed for Cyber-Security

Hanoi, 21-23 Sep., 2022

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Trong-Thuc HOANG, Ba-Anh DAO, Anh-Tien LE,

Van-Phuc HOANG, and Cong-Kha PHAM

University of Electro-Communications (UEC), Tokyo, Japan

Academy of Cryptography Techniques (ACT-VN), Hanoi, Vietnam

Le Quy Don Technical University (LQDTU), Hanoi, Vietnam

1

1

2 1,2

1

2

3

3

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

2

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

3

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

4

1. Introduction (1/5) Authors

Trong-Thuc HOANG,

Assistant Professor (UEC)

Cong-Kha PHAM,

Professor (UEC)

Ba-Anh DAO,

Dr. (ACT-VN)

Anh-Tien LE

(UEC, ACT-VN)

Van-Phuc HOANG,

Associate Professor

(LQDTU)

7

1. Introduction (2/5) RISC-V project timeline

2018

VexRiscv32(1)

SOTB65nm

2x1.5-mm2

09 2020

2019

10

Rocket64(1)

ROHM180nm

5x5-mm2

Rocket64(4)

ROHM180nm

5x7.5-mm2

08

8

1. Introduction (3/5) RISC-V project timeline

VexRiscv32(1)

ROHM180nm

2.5x2.5-mm2

2020 2021

Rocket32(1)

+ Boom32(1)

+ Crypto-cores

ROHM180nm

5x5-mm2

06

Rocket64(2)

+ Crypto-cores

ROHM180nm

5x5-mm2

01

Boom64(1) +

Crypto-cores

ROHM180nm

5x5-mm2

9

1. Introduction (4/5) RISC-V project timeline

2021 202202

Rocket32(1)

+ Boom32(1)

+ Crypto-cores

+ TRNG

+ Secure boot

ROHM180nm

5x5-mm2

Rocket64(2)

+ Crypto-cores

+ TRNG

+ Secure boot

ROHM180nm

5x5-mm2

06

Rocket64(1) + Boom64(1)

+ Crypto-cores & TRNG

+ Secure boot

ROHM180nm : 5x7.5-mm2

10

1. Introduction (5/5) RISC-V project timeline

2022
02

Rocket32(1)

+ TLS-1.3

Crypto-cores

+ TRNG

+ Secure boot

ROHM180nm

5x5-mm2

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

9

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

2. RISC-V vs. Cyber-security (1/8) What is ISA?

10

ISA means Instruction Set Architecture

Software tools: assembler, compilers, debugger, linker, etc.

Processor: ALU, FPU, registers, CSRs, branch predictor, caches, etc.

ISA: the interface between software & hardware architects

1) How many instructions, and which is which?

2) In an instruction, what field means what?

3) Addressing & data-path (8/16/32/64/128-bit)?

4) What is supported and what is not?

5) etc.

ISA has to define all these kinds of stuffs:

2. RISC-V vs. Cyber-security (2/8) CISC vs. RISC

11

CISC

(Complex Instruction Set Computer)

1) Emphasis on hardware

2) Includes multi-clock complex

instructions

3) Memory-to-memory mindset

4) Small code sizes, high cycles/s

5) Transistors used for storing complex

instructions

RISC

(Reduced Instruction Set Computer)

1) Emphasis on software

2) Single-clock reduced instructions only

1) Register-to-register mindset

2) Large code sizes, low cycles/s

3) Spends more transistors, and most of them

are used for storing data

RISC-V simply means RISC architecture version five

Nowadays, almost

all processors in the

market are RISCs.

RISC win CISC win

2. RISC-V vs. Cyber-security (3/8) RISC-V ISA

12

Open-source RISC-V means open-source ISA, no more, no less.

Licensed free:

License depended on authors/developers:

● RISC-V ISA

● RISC-V toolchain

● RISC-V processors

● RISC-V software applications

● RISC-V-related products

(some other common ISAs: i386, amd64, ARM 32/64, AVR, MIPS, NiosII, etc.)

RISC-V Foundation: https://riscv.org/

● Official released ISA specification

● Many cores, SoCs, & software are available

● Developers can reuse each other designs & tools

→ significantly reducing R&D time and effort

https://riscv.org/

2. RISC-V vs. Cyber-security (4/8) RISC-V ISA

13

What makes RISC-V different: its modular mindset

Base instruction set: Integer

Extended instruction set: the rest

(modular architecture helps fine-tune the

performance based on the developer’s needs [1])

The most common

extensions: IMAFDC

(also known as GC)

There are also

a lot more than

just IMAFDC :

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

2. RISC-V vs. Cyber-security (5/8) RISC-V ISA

14

To support an Operating System (OS), the ISA has to support the OS stack

or the M-/S-/U-mode.

RISC-V ISA not only supports the OS stack,

but also provides a privileged architecture [2].

Different scenarios of utilizing the OS stack:RISC-V privileged

architecture:

→ Better security scheme by having the hardware

recognize different codes executed at different modes.

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

2. RISC-V vs. Cyber-security (6/8) RISC-V toolchain

15

RISC-V toolchain and its ecosystem [3]:

A typical

C-to-

target

scenario:
Three most important tools:

● GCC: (cross C compiler) make a C code into

assembly code

● LD: (linker) links standard libraries into the

build; also links between multiple C files

● GDB: (debugger) debug the

hardware/simulator/emulator

https://github.com/riscv-collab/riscv-gnu-toolchain

2. RISC-V vs. Cyber-security (7/8) RISC-V security

16
[4]

Security topics

that attract

attention in the

RISC-V

community.

https://arxiv.org/pdf/2107.04175.pdf

2. RISC-V vs. Cyber-security (8/8) RISC-V security

17

The top reasons for choosing RISC-V for Cyber-security

● For an opportunity to secure the Internet-of-Things (IoT): cybersecurity software is

ultimately ineffective. To truly address the problem, we need to address the issue at its

core: directly inside the SoCs.

● For price-sensitive applications: specific and limited (also usually repeated) tasks can

be solved cost-efficiently with a base core and a few specialized components.

● For an open approach to cyber-security: RISC-V's ecosystem has seen significant

growth over the past few years. A Rich and strong open-source community promises

equally rich and strong public libraries and open-source designs.

● For frequently discussed and addressed security issues: cyber-security hot topics

are discussed frequently at least once a month. They are hosted by the two work groups

of Cryptographic Extensions and Trusted Execution Environment (TEE) [5].

https://riscv.org/blog/2020/03/risc-v-an-open-approach-to-system-security/

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

18

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

3. Secure Boot for TEE (1/23) What is TEE?

19

Trusted Execution Environment (TEE) [6] provides:

1.Integrity: the code and data cannot be tampered.

2.Confidentiality: the application’s content cannot be read.

3.Attestation: proof to a remote party that the system is

safe.
A typical TEE setup:

● Secure (trusted) vs. non-secure

(untrusted) worlds.

● Barrier enforcer by: software AND

hardware.

● All TEEs need some sort of

hardware-assisted modules: Root-

of-Trust (RoT) and primitives.

● HW primitives (examples): cache flushing, cache partitioning, memory isolation, memory

encryption, keys management, bus access controller, enclave encryption, and so on.

3. Secure Boot for TEE (2/23) What is TEE?

20

Root-of-Trust (RoT) in theTEE:

● Root-of-Trust (RoT): the 1st verification at reset, the

starting-point for CoT.

● Chain-of-Trust (CoT): a series of signatures &

certificates started from the RoT up to the Rich OS.

Secure boot guarantee:

● All TEE-related assets (code,

trusted OS/drivers, hardware

primitives) are installed and at the

initial states (as expected by

designers).

● Means: EVERYTHING is

signature checked, and EVERY

sensitive data are immutable or

held in isolation.

3. Secure Boot for TEE (3/23) TEE vs. secure boot

21

TEE is just an isolated environment. It isn’t, and

shouldn’t be, the Root of Trust (RoT).

Most TEE models have to assume:

● The hardware is trusted and securely booted.

● The bootloader is “bug-free,” and the RoT has not

been tampered.

To achieve this, we can:

1. Use TEE processors for the secure boot.

2. Use extra hardware or third-party IPs.

3. Other approaches such as dynamic RoT without reset.

Bury root keys deep under layers of obscurity just increase the cost for attackers. The attack

surface still exists as long as the secure boot process and RoT are still in the TEE system.

3. Secure Boot for TEE (4/23) TEE implementations

22

● Many TEE models

were proposed:

different set goals,

different resources,

and different

developing

mindsets.

● Most closed-source

TEEs are fine-tuned

for their specific

processors.

Intel SGX [7]: aiming

for conventional PCs
AMD SEV [9]: aiming for

server’s cloud computing

ARM TrustZone [8]: aiming for

smartphones/embedded-systems

https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf

3. Secure Boot for TEE (5/23) TEE implementations

23

MultiZone [10]:

lightweight TEE,

multi-purposes,

aiming for

embedded/IoT

applications

TIMBER-V [12]:

similar approach with

Intel SGX, but uses

strong hardware

enforcers based on

“Tag”-ID across the

entire system

Sanctum

[11]: similar

approach

with Intel

SGX, but for

RISC-V

processors

https://hex-five.com/

3. Secure Boot for TEE (6/23) TEE implementations

24

Keystone [13]: is not a specific

type of TEE, but a modular TEE

framework (try its best to be

hardware-agnostic)

CURE [14]: a complete opposite with

Keystone, this TEE model requires a total

hardware modification across every

architectural level (but provides strong

isolation with multiple types of enclaves)

3. Secure Boot for TEE (7/23) TEEs comparison

25

● Choose Keystone for the

software implementation:

■ Open-source: modular

TEE framework, versatile

usage.

■ Kernel-space enclave:

better isolation in general.

■ Hardware-agnostic: does

not require any special

custom-built features to

function.

3. Secure Boot for TEE (8/23) Propose architecture

26

Propose: A secure boot process with RoT for TEE

Main points of

the proposed

architecture:

1. Root key

installed at the

time

manufactured.

2. Hidden MCU for the flexible boot program

3. Hierarchy-bus: TEE processors cannot access RAM/ROMs in the isolated domain (BUT

the isolated core can access ALL)

3. Secure Boot for TEE (9/23) Secure boot process

27

The proposed

keys scheduling

scheme.

3. Secure Boot for TEE (10/23) Secure boot process

28

Step-by-step

● Step 1: The

manufacturer

plays the role of

root CA (public

key is well-

known &

certificate is self-

signed)

3. Secure Boot for TEE (11/23) Secure boot process

29

Step-by-step

● Step 2:

manufacturer

generate root SR

& PR also offline,

and then uses SM

to sign on the PR

and secure

BootLoader (sBL)

sBL is stored in the

same place with PR,

the isolated ROM.

3. Secure Boot for TEE (12/23) Secure boot process

30

Step-by-step

● Step 3: (still

offline) the

manufacturer (or

the provider)

generates the pair

SD & PD.

Then have the root

secret key

generates the

DCert. and sign the

ZSBL.

3. Secure Boot for TEE (13/23) Secure boot process

31

Here is the RoT

● SD is stored in the

isolated ROM.

● ZSBL & PD could

be in a flash

outside.

● The very first task

of the isolated

processor is:

○ Verify the ZSBL

signature by

using the PR

→ this allows future

updates on the

ZSBL.

3. Secure Boot for TEE (14/23) Secure boot process

32

Step-by-step

● Step 4: (now on-

chip) the isolated

processor executes

the ZSBL and:

○ Use TRNG to

seed EC-genkey

& create the pair

of SK & PK

○ Load the FSBL

(hash & sign) to

the public RAM.

○ Wakes up the

TEE processors

3. Secure Boot for TEE (15/23) FPGA result

33

Build Reports of the Proposed TEE SoC in Virtex-7 FPGA (XC7VX485T)

● Build with default configuration:

○ ISA: RV64IMAFDC.

○ Cache: 16-KB for inst. & 16-KB for data.

○ L2 cache: 512-KB.

○ Isolated sub-system: included.

○ PCIe: excluded.

3. Secure Boot for TEE (16/23) VLSI result

34

Synthesis results of the Proposed TEE SoC in ROHM-180nm.

● Build with default configuration:

○ ISA: RV64IMAFDC.

○ Cache: 16-KB for inst. & 16-KB for data.

○ L2 cache: 512-KB.

○ Isolated sub-system: included.

○ PCIe: excluded.

*Note: the used tools are Cadence’.

3. Secure Boot for TEE (17/23) Comparison

35

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

3. Secure Boot for TEE (18/23) Comparison

36

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

ITUS: secure boot by all hardware modules.

This work: crypto-cores just for accelerating

the boot flow, not a hard requirement.

3. Secure Boot for TEE (19/23) Comparison

37

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

Even including crypto-cores,

this work still smaller.

3. Secure Boot for TEE (20/23) Comparison

38

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

HECTOR-V: uses TEE processors to

boot, no crypto accelerators.

(they are not the same idea, but compared

based on the secure boot’s hardware

requirements)

This work: use IBex to boot, could

excluded the crypto-cores.

3. Secure Boot for TEE (21/23) Comparison

39

Comparison with other secure-boot RISC-V-based TEE SoCs.

ITUS

[15, 16]

(2019)

HECTOR-V

[17]

(2021)

Approximately the same

3. Secure Boot for TEE (22/23) Comparison

40

Achieved:

● Secure boot

process with RoT

for TEE.

● Flexible boot flow.

● Complete isolation

between the boot

process and the

TEE domain.

● Has exclusive

storage for boot

program only.

● Cryptographic

accelerators are

available.

HECTOR-V

[17]

ITUS

[15, 16]

CURE

[18]

WorldGuard

[19]

3. Secure Boot for TEE (23/23) Summary

41

Key Achievements

1. TEE-HW with cryptographic accelerations: custom hardware was made for

accelerating the TEE boot flow.

2. TEE-HW with isolated RoT: the heterogeneous architecture was proposed to isolate the

RoT from the TEE side.

■ The manufacturer and root keys are stored at the time manufactured.

■ The ability to make a secure direct connection from the isolated bus to outside

peripherals.

■ The secure boot flow is executed by the isolated environment.

■ The bootloader program is flexible and can be updated.

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

42

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

4. Spectre attack in OoO Processors (1/12)

Spectre - Cache side-channel attack

Target: RISC-V Out-of-order BOOM

First variants:

● Spectre v1: Bound Check Bypass

● Spectre v2: Branch Target Injection

BOOM suitable for Spectre

● Branch Predictor Unit

● Speculative Execution

● Caching

● …

Cache memory

43

4. Spectre attack in OoO Processors (2/12)

a = 1

a = 2

a = 3

a = X

TRUE => Execute B

TRUE => Execute B

TRUE => Execute B

Guess as TRUE => Execute B

TRUE => Execute B…

User input Process

Speculative execution example:
IF (a < 10)

Run B

44

4. Spectre attack in OoO Processors (3/12)

Typical attack strategy:

1. Setup processor cache, for example, fill or flush

all the cache lines, as in timing attacks

approaches.

2. Force mis-speculation in victim code to leak

secret into a side-channel

3. Attacker recovers secret from side-channel effect

in the cache (usually the access load time).

45

4. Spectre attack in OoO Processors (4/12)

Implement RISC-V processor

● BOOM core: exploited

● Rocket core: not exploited

FPGA VC707

Attack log (success case)

Observe cache accessing time after

an attack attempt 46

4. Spectre attack in OoO Processors (5/12)

Software mitigation method

● Fence instructions

● Speculation Load Hardening

Properties:

● Modify to strengthen victim program

● Require to re-compile source code

● Affect on performance

if (x < a_size)

return

a[x];

else

return ‘0’;

Original target for spectre attack

47

4. Spectre attack in OoO Processors (6/12)

Fence instructions
=> Force in-order execution

TRUE

FALS

E
x < a_size

fence r,rw return ‘\0’

return ‘a[x]’

x < a_size

Return a[x] Return ‘\0’

TRUE

FALSE

Original code

48

4. Spectre attack in OoO Processors (7/12)

No mitigation

• Normal execution cycle: 210

Mitigation using fence

• Normal execution cycle: 242 - 290

• Performance loss: 15 – 43%

Performance measure

49

4. Spectre attack in OoO Processors (8/12)

D-Cache
Lower level

memory
MSHR

Hardware mitigation method: modifying MSHRs

● MSHRs: miss status holding registers

● Located in The Load/Store Unit (LSU)

● Handling data forwarding when mis-speculative events

=> Delay the data forwarding when mis-speculative

50

O

Boom v3 & Spectre v2
Secure Boom v3 & Spectre v2

X

● Config: Single core RISC-V MediumBoom

● Verilator software simulation

● Secure Boom: modify MSHRs for Spectre-

resistant

Secure Boom v2 & Spectre v2

X

4. Spectre attack in OoO Processors (9/12)

51

4. Spectre attack in OoO Processors (10/12)

● Benchmark riscv-tests

● The performance ratio of Boom-v2 is set as 1.0

52

4. Spectre attack in OoO Processors (11/12)

● MSHRs resources utilization

Configuration LUT FF

Normal MSHR 1926 1120

Secure MSHR 1980 (2.8%) 1124 (0.4%)

53

4. Spectre attack in OoO Processors (12/12)

Spectre on

RISC-V

Boom

Detection

Prevention

Software approach Hardware approach(*)

Idea or

Research

● Analyse hardware

performance counter

● Use machine learning

• Fence instruction

• Speculation Load Hardening

(Index masking)

• Modifying MSHRs

Benefits

● High accuracy and

simple (>95%)

● Low performance

overhead (~2%)

• Strengthen victim program

• Simple to implement

• Low performance

overhead

Drawbacks

● Need to find action

after detection

● Need to re-create model

for new threat

• Require to re-compile victim

code

• High performance overhead: 15-

43%

• Complicated.

• Time consuming to

verify and develop.

(*) Currently on research stage 54

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

55

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

5. Prevent CPA with RDFS (1/10)

56

Side-channel attacks:

Exploit unavoidable side-channel

information in cryptanalysis.

Power Analysis attacks:

Using Power consumption or

Electromagnetic radiation.

A cryptographic device leaks

side-channel information

5. Prevent CPA with RDFS (2/10)

57

Countermeasures for Cryptographic SoC:

Existing techniques are not suitable:

- Masking: Reduce performance, Increase

power, area.

- Hiding: Huge hardware overheads.

⇒ Proposed Ideas:

- Randomly scale the clock freq. of

Crypto.Acc. after each encryption/decryption.

- Only applied to the Crypto.Acc.

- Create as many Clock frequencies as

possible.

Example of Cryptographic SoC

5. Prevent CPA with RDFS (3/10)

58

Unprotected Cryptographic SoC (TEE-Hardware)

Unprotected SoC (TEE-

hardware):

● 32-bit RISC-V SoC

● DDR Controller ⇒
support Linux OS

● Crypto. Accelerator:

○ AES-128/256

○ SHA3

○ ED25519

○ PRNG

● Fixed system Clock:

Fsys = 50MHz

5. Prevent CPA with RDFS (4/10)

59

Protected SoC with RDFS:

● Add Clock Generation

peripherals (use Xilinx’s Clock

Manager IP)

● Create > 219.000 frequencies

(in range from 50MHz to

100MHz)

● Verify accuracy by Pulse

counter

● Only applied to AES-128

module

● Scale AES’s CLK after each

encryption

Protected Cryptographic SoC with RDFS [21]

5. Prevent CPA with RDFS (5/10)

60

Xilinx 7-Series' Mixed Mode Clock Manager [22]

Constraints for Kintex-7 devices:

● 10MHz ≤ Fin ≤ 800MHz

● 10MHz ≤ (Fin / D) ≤ 450MHz

● 600MHz ≤ FVCO ≤ 1200MHz

● 1 ≤ D ≤ 106 (integer)

● 2 ≤ M ≤ 64 (fractional with 0.125

increment)

● 2 ≤ O0 ≤ 128 (fractional with 0.125

increment)

● 1 ≤ O1-6 ≤ 128 (integer)

5. Prevent CPA with RDFS (6/10)

61

How to use:

● Generate all possible settings for

D,M,O0

● Store setting values as C header

in your code

● Randomly select, apply a new

setting after each encryption or

decryption

Xilinx 7-Series' Mixed Mode Clock Manager [22]

5. Prevent CPA with RDFS (7/10)

62

Available

Original

Unprotected SoC
AES accelerator Protected SoC Hardware

Overhead

(%)Utilization (%) Utilization (%) Utilization (%)

LUT 101400 48989 48.31 3169 3.13 51047 50.34 4.20

FF 202800 39298 19.38 3307 1.63 39516 19.49 0.55

BRAM 325 30 9.23 0 0 30 9.23 0

MMCM 8 2 25 0 0 3 37.5 50

Implementation results on Kintex-7 FPGA

5. Prevent CPA with RDFS (8/10)

63

Test Vector Leakage Assessment (TVLA) results:

● RDFS with 219,412 clk freq. (50MHz - 100MHz)

● Does not detect any leakage in 5 million power traces

5. Prevent CPA with RDFS (9/10)

64

CPA attacks #1 #2 #3 #4

Para-

meters

Target device Unprotected SoC Unprotected SoC Unprotected SoC Protected SoC

Operating mode Bare-metal Bare-metal Linux OS Bare-metal

Measuring method Single acquisition Averaging-64 Averaging-64 Single acquisition

Power model Hamming Weight model

Number of attacking traces 70,000 18,000 20,000 5 million

Attack

Results

Number of byte revealed 12/16 13/16 13/16 0/16

Min traces required 1,642 to 58,685 465 to 7,613 1,650 to 19,591 N/A

Average traces required 28,683 1,928 10,175 N/A

Correlation Power Analysis (CPA) results:

● Cannot extract any byte of secret key with 5 million power traces

5. Prevent CPA with RDFS (10/10)

65

DLSCA attack # #1 #2 #3 #4 #5

Para-

meters

Target device Unprotected SoC Unprotected SoC Unprotected SoC Protected SoC Protected SoC

Operating mode Bare-metal Bare-metal Linux OS Bare-metal Bare-metal

Measuring method Single acquisition Averaging-64 Averaging-64 Single acquisition Single acquisition

Number of

profiling traces
60,000 15,000 17,000 1,000,000 60,000

Number of

attacking traces
12,000 3,000 3,000 100,000 12,000

Attack

Results

Number of byte revealed 16/16 16/16 9/16 13/16 0/16

Min traces required 4,231 805 2,022 45,924 N/A

Deep Learning based Side Channel Attacks (DLSCA) results:

● Extremely powerful, can break RDFS countermeasure

● Require 16.67 times number of profiling traces

● Require 8.33 times number of attacking traces

OUTLINE
1. Introduction

2. What is RISC-V, and How Does It Affect Cyber-Security?

3. Secure Boot for Trusted Execution Environment (TEE)

4. Cache Side-channel Attack (Spectre) on Out-of-Order (OoO) Processors

5. Prevent Correlation Power Analysis (CPA) with Random Dynamic

Frequency Scaling (RDFS)

6. Conclusion

66

Int. Conf. on IC Design & Technology

(ICICDT 2022)

Hanoi, 21-23 Sep., 2022

Conclusion (1/1)

Keys takeaway
1. RISC-V is an opportunity to secure the IoT and is friendly with price-sensitive applications.

It is an open approach to cyber-security with a solid and rich open-source community.

2. A Trusted Execution Environment (TEE) is the formal way to do the trusted vs. untrusted

execution domains. However, TEE should not handle the Root-of-Trust (RoT) due to

security concerns. Therefore, a platform that can provide a secure boot process with RoT

utterly inaccessible from the TEE processors after boot is necessary.

3. RISC-V Out-of-order Processor has been proved vulnerable against cache side-channel

attack (Spectre). Fortunately, detection and mitigation methods have been studied and

implemented. Our approach for a secure MSHR (miss status holding register) has

demonstrated a low-performance loss and small resource utilization solution.

4. Power Analysis attacks are powerful tools to break the security of cryptographic devices.

Using RISC-V architecture, designers can easily apply suitable countermeasures to improve

the system’s resistance against these kinds of attacks. 67

Int. Conf. on IC Design & Technology

(ICICDT 2022)

THANK YOU

68

Hanoi, 21-23 Sep., 2022

References (1/4)
1. A. Waterman and K. Asanovíc, “The RISC-V Instruction Set Manual Volume I: Unprivileged ISA,”

SiFive Inc. and EECS Dep., Univ. of California, Berkeley, Dec. 2019. [Online] https://riscv.org/wp-

content/uploads/2019/12/riscv-spec-20191213.pdf

2. A. Waterman, K. Asanović, and John Hauser, “The RISC-V Instruction Set Manual Volume II:

Privileged Architecture,” SiFive Inc. and EECS Dep., Univ. of California, Berkeley, Dec. 2021.

[Online] https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-

20211203.pdf

3. RISC-V GNU Compiler Toolchain. [Online] https://github.com/riscv-collab/riscv-gnu-toolchain

4. Tao Lu, “A Survey on RISC-V Security: Hardware and Architecture,” arXiv:2107.04175v1 [cs.CR],

Jul. 2021. [Online] https://arxiv.org/pdf/2107.04175.pdf

5. Helena Handschuh, “RISC-V: An Open Approach to System Security,” Mar. 16, 2020. [Online]

https://riscv.org/blog/2020/03/risc-v-an-open-approach-to-system-security/

6. M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer, “TEE-Perf: A Profiler for Trusted Execution

Environments,” in Proc. of Annual IEEE/IFIP Int. Conf. on Dependable Syst. and Networks (DSN),

Jun. 2019, Portland, OR, USA, pp. 414-421.

69

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv-collab/riscv-gnu-toolchain
https://arxiv.org/pdf/2107.04175.pdf
https://riscv.org/blog/2020/03/risc-v-an-open-approach-to-system-security/

References (2/4)

70

7. Intel Corp., “Intel Software Guard Extensions (Intel SGX) Developer Guide.” [Online]

https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf

8. S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive Survey,” in ACM

Comput. Surv., vol. 51, no. 6, pp. 1-36, Nov. 2019.

9. R. Buhren, C. Werling, and J.-P. Seifert, “Insecure Until Proven Updated: Analyzing AMD SEV's

Remote Attestation,” in Proc. of ACM SIGSAC Conf. on Computer and Comm. Secu. (CCS), Nov.

2019, London, UK, pp. 1087–1099.

10.Hex Five Security, Inc., “MultiZone Hex-Five Security.” [Online] https://hex-five.com/

11.V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware Extensions for Strong

Software Isolation,” in Proc. of Secu. Symp. (USENIX), Aug. 2016, Austin, TX, USA, pp. 857-874.

12.S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R. Sadeghi, “TIMBER-V: Tag-

Isolated Memory Bringing Fine-grained Enclaves to RISC-V,” in Proc. of Network and Distributed

Syst. Secu. Symp. (NDSS), Feb. 2019, San Diego, CA, USA, pp. 1-15.

13.D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song, “Keystone: An Open Framework for

Architecting Trusted Execution Environments,” in Proc. of European Conf. on Computer Syst.

(EUROSYS), Apr. 2020, Heraklion, Greece, pp. 1-16.

https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://hex-five.com/

References (3/4)

71

14.R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi, and E. Stapf,

“CURE: A Security Architecture with CUstomizable and Resilient Enclaves,” in Proc. of USENIX

Secu. Symp. (USENIX Security), Aug. 2021, Virtual Event, pp. 1073-1090.

15.J. H.-Yahya, M. M. Wong, V. Pudi, S. Bhasin, and A. Chattopadhyay, “Lightweight Secure-Boot

Architecture for RISC-V System-on-Chip,” in Proc. of Int. Symp. on Quality Electronic Design

(ISQED), Mar. 2019, Santa Clara, CA, USA, pp. 216-223.

16.V. B. Y. Kumar, A. Chattopadhyay, J. H.-Yahya, and A. Mendelson, “ITUS: A Secure RISC-V

System-on-Chip,” in Proc. of IEEE Int. System-on-Chip Conf. (SOCC), Sep. 2019, Singapore,

Singapore, pp. 418-423.

17.P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “HECTOR-V: A Heterogeneous CPU

Architecture for a Secure RISC-V Execution Environment,” in Proc. of ACM Asia Conf. on

Computer and Comm. Secu. (ASIA CCS), Jun. 2021, Virtual Event, Hong Kong, China, pp. 187-199.

18.R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi, and E. Stapf,

“CURE: A Security Architecture with CUstomizable and Resilient Enclaves,” in Proc. of USENIX

Secu. Symp. (USENIX Security), Aug. 2021, Virtual Event, pp. 1073-1090.

19.SiFive, Inc., “Securing The RISC-V Revolution.” [Online]

https://www.sifive.com/technology/shield-soc-security

https://www.sifive.com/technology/shield-soc-security

References (4/4)

72

20.A. Le et al, "Experiment on replication of side channel attack via cache of RISC-V Berkeley out-of-

order machine (BOOM) implemented on FPGA", CARRV 2020.

21.Dao, B.A., Hoang, T.T., Le, A.T., Tsukamoto, A., Suzaki, K. and Pham, C.K., 2021. Correlation

Power Analysis Attack Resisted Cryptographic RISC-V SoC With Random Dynamic Frequency

Scaling Countermeasure. IEEE Access, 9, pp.151993-152014.

22.Guide, Xilinx User. "seriens FPGAs clocking resources,”." UG472, Jun 12 (7): 2015.[Online]

https://docs.xilinx.com/v/u/en-US/ug472_7Series_Clocking

https://docs.xilinx.com/v/u/en-US/ug472_7Series_Clocking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

