
Trusted Execution Environment 

(TEE) on Open-source RISC-V 

Processor System

Authors: Trong-Thuc Hoang, Ckristian Duran, Akira Tsukamoto, 

Kuniyasu Suzaki, and Cong-Kha Pham



Outline

1. Introduction: RISC-V

2. Trusted Execution Environment

3. TEE-Hardware System

4. Results & Conclusion

2



Outline

1. Introduction: RISC-V

2. Trusted Execution Environment

3. TEE-Hardware System

4. Results & Conclusion

3



1. Introduction: RISC-V (1/4)

What is RISC-V?

• RISC-V is an open-source Instruction Set Architecture (ISA)

• What is ISA? i386 and AMD64 are ISA

• Comparing RISC-V to i386/AMD64 is like comparing Linux to Windows

• Originate from UC Berkeley, but now is maintained by RISC-V Foundation

4



1. Introduction: RISC-V (2/4)

What is RISC-V?

• RISC-V is an open-source Instruction Set Architecture (ISA)

• What is ISA? i386 and AMD64 are ISA

• Comparing RISC-V to i386/AMD64 is like comparing Linux to Windows

• Originate from UC Berkeley, but now is maintained by RISC-V Foundation

Look who’s here :)

5



1. Introduction: RISC-V (3/4)

What is RISC-V?

• RISC-V is an open-source Instruction Set Architecture (ISA)

• What is ISA? i386 and AMD64 are ISA

• Comparing RISC-V to i386/AMD64 is like comparing Linux to Windows

• Originate from UC Berkeley, but now is maintained by RISC-V Foundation

What is RISC-V capable of?

• RISC-V supports 32-bit, 64-bit, and 128-bit addressing

• Core ISA is just Integer, but it has many extensions: Multiplication, Atomic, Floating-point, 

Double floating-point, and Compressed

• When designing your system, you can combine any of those extensions. The most common are 

RV64IMAFDC and RV32IMAFDC

• Open ISA → anybody can custom their own CPU → highly customize processor to fit any 

specific requirement

RISC-V Foundation guarantees the open-ness of the ISA, and also maintains its toolchain

(for example, assembler, linker, compiler, etc.)
6



1. Introduction: RISC-V (4/4)

RISC-V revolutionizes not only the open ISA,

but also the way of hardware coding. 

“old school” hardware coding “RISC-V style” hardware coding

• RTL (Verilog/VHDL) code • Verilog code

• Chisel code

• FIRRTL code
generate

generate

To clarify for someone unfamiliar with Chisel-to-Verilog scheme:

1. Chisel coding is not a programming language, it is a description language

2. The generated Verilog code from Chisel is a TRUE RTL code

3. With proper settings, that Verilog codes after generated can be brought 

directly to VLSI tools (Synopsys/Cadence) to make a chip
7



Outline

1. Introduction

2. Trusted Execution Environment

3. TEE-Hardware System

4. Results & Conclusion

8



9

2. Trusted Execution Environment (1/5)

TEE-HW System on FPGARemote PC

Trusted Side

Linux OS

Untrusted Side

SM (Security Monitor)

U-mode

S-mode

M-mode

Remote PC connects to FPGA via Serial (UART) terminal or a TCP connection

Verifier (client)

TEE in-action (using Keystone: A TEE Framework)

TEE (Keystone in this case) creates the Trusted-Side based on the chain-of-trust 

across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.



10

2. Trusted Execution Environment (2/5)

TEE-HW System on FPGARemote PC

Keystone Runtime (Eyrie)

Keystone Enclave App

Trusted Side

Linux OS

Enclave host

Untrusted Side

Verifier (client)

SM (Secure Monitor)

U-mode

S-mode

M-mode

Start trust_client

Start Enclave 

& Eyrie

TEE in-action (using Keystone: A TEE Framework)

1. Connection with the Enclave host



11

2. Trusted Execution Environment (3/5)

TEE-HW System on FPGARemote PC

Keystone Runtime (Eyrie)

Keystone Enclave App

Trusted Side

Linux OS

Enclave host

Untrusted Side

SM (Secure Monitor)

U-mode

S-mode

M-mode

Verifier (client)

SM & Enclave 

report info

Attestation 

report
Verify attestation

TEE in-action (using Keystone: A TEE Framework)

1. Connection with the Enclave host

2. Verify attestation report



12

2. Trusted Execution Environment (4/5)

TEE-HW System on FPGARemote PC

Keystone Runtime (Eyrie)

Keystone Enclave App

Trusted Side

Linux OS

Enclave host

Untrusted Side

SM (Secure Monitor)

U-mode

S-mode

M-mode

Verifier (client)

‘‘‘

Send client.pub

Send enclave.pub

TEE in-action (using Keystone: A TEE Framework)

1. Connection with the Enclave host

2. Verify attestation report

3. Exchange communication keys



13

2. Trusted Execution Environment (5/5)

TEE in-action (using Keystone: A TEE Framework)

TEE-HW System on FPGARemote PC

Keystone Runtime (Eyrie)

Keystone Enclave App

Trusted Side

Linux OS

Enclave host

Untrusted Side

SM (Secure Monitor)

U-mode

S-mode

M-mode

Verifier (client)

Keystone demo: (1) client sends strings, then (2) request calculation from the Enclave, 

finally (3) the Enclave replies with the number of words

1. Connection with the Enclave host

2. Verify attestation report

‘‘‘

Send a string

Reply with the 

number of words

3. Exchange communication keys

4. Client’s app runs on the established TEE



Outline

1. Introduction

2. Trusted Execution Environment

3. TEE-Hardware System

4. Results & Conclusion

14



3. TEE-Hardware System (1/6)

15

COREPLEX

TILELINK SYSTEM BUS (SBUS)

TILELINK PERIPHERAL BUS (PBUS)

SHA-3

RISC-V CORE 2

I$ D$

L2$ Bank

DDR 
controller

GPIO
SPI (as 
MMC)

UART

RISC-V CORE 1

I$ D$

MBUS

ED 
25519

AES 128 
& 256

PRNG
USB 
1.1

TL to AXI4

PRCI & 
CLINT

SPI (as 
ROM)

Mask 
ROM

Debug

TL sync

PCIe

• Not fixed at dual-core, can increase/decrease the number of cores as you wanted

• Available cores: Rocket-chip (in-of-order core) and BOOM (out-of-order core)

• Some hardware modules can be easily included/excluded to/from the system

System Architecture:



3. TEE-Hardware System (2/6)

16

Variable Available option Description

BOARD

- VC707

- DE4

- TR4

Select the FPGA board

ISACONF

- RV64GC

- RV64IMAC

- RV32GC

- RV32IMAC

Select the ISA

MBUS
- MBus64

- MBus32
Select the bit-width for the memory bus

BOOTSRC
- BOOTROM

- QSPI
Select the boot source

PCIE
- WPCIe

- WoPCIe

- Include PCIe module in the system

- Remove PCIe module from the system

DDRCLK
- WSepaDDRClk

- WoSepaDDRClk

- Separate DDR-clock with System-clock

- Not separate DDR-clock with System-clock

HYBRID

- Rocket

- Boom

- RocketBoom

- BoomRocket

- Two Rocket cores

- Two Boom cores

- Rocket core 1st, Boom core 2nd

- Boom core 1st, Rocket core 2nd

In the Makefile system, 

these variables are 

available.

Example usage:



3. TEE-Hardware System (3/6)

17

Summary table of FPGA logic utilization (on VC707) with various core configurations:

ISACONF

HYBRID
FPGA logic utilization

(LUT) (on VC707)Core0 Core1

RV64GC

Boom Boom 160,873 52.99%

Rocket Rocket 96,571 31.81%

Boom Rocket 128,708 42.39%

Rocket Boom 128,719 42.40%

RV64GC

Rocket Rocket

96,571 31.81%

RV64IMAC 72,007 23.72%

RV32GC 89,356 29.43%

RV32IMAC 65,899 21.71%



3. TEE-Hardware System (4/6)

18

COREPLEX

TILELINK SYSTEM BUS (SBUS)

TILELINK PERIPHERAL BUS (PBUS)

SHA-3

RISC-V CORE 2

I$ D$

L2$ Bank

DDR 
controller

GPIO
SPI (as 
MMC)

UART

RISC-V CORE 1

I$ D$

MBUS

ED 
25519

AES 128 
& 256

PRNG
USB 
1.1

TL to AXI4

PRCI & 
CLINT

SPI (as 
ROM)

Mask 
ROM

Debug

TL sync

PCIe

Crypto-cores: • SHA-3 512 • Ed25519 (genkey and certification)

• AES-128/256 • PRNG (Pseudo-random generator)



3. TEE-Hardware System (5/6)

19

SHA-3 AES-128/256
Ed25519

Mult Sign

ALUT 8,108 3,195 2,737 3,969

Registers 2,790 2,854 4,778 4,617

Fmax (MHz) 100 100 100 100

Memory 0 0 8KB 0

DSP block 0 0 48 0

Crypto-cores on Stratix-IV FPGA



3. TEE-Hardware System (6/6)

20

SHA-3 AES-128/256
Ed25519

Mult Sign

Size
1,150µm ×

1,150µm

808.96µm ×

806.4µm

1,694.72µm ×

1,693.44µm

1,346.56µm ×

1,345.68µm

Gate-count 

(NAND)
102,500 50,560 222,432 140,442

Fmax (MHz) 104 90 106 91

Power (mW) 42.745 37.566 53.061 80.894

Crypto-cores in ASIC (ROHM-180nm)



Outline

1. Introduction

2. Trusted Execution Environment

3. TEE-Hardware System

4. Results & Conclusion

21



6. Results & Conclusion (1/3)

22

Aug.

SOTB65 2.0×1.5mm

RV64GC 

Rocket-

chip(×1)

64-bit MCU

RV64GC 

Rocket-

chip(×4)

TEE-HW

ROHM180 5.0×5.0mm

Jan.Sep.

32-bit MCU

RV32IM 

VexRiscv(×1)

Oct.

ROHM180 

5.0×7.0mm

Add:Linux-

compatible

TEE-HW

2020

RV64GC 

Rocket-

chip(×2)

Add: 

Crypto 

cores

TEE-HW

TEE-HW

RV64GC 

BOOM(×1)

RV32IMAC 

Rocket-

chip(×1)+
BOOM(×1)

ROHM180 5.0×5.0mm

ROHM180 5.0×5.0mm

Add: 

BOOM 

core

Add: 32-bit 

system

Jun.

ROHM180 5.0×5.0mm

2019



6. Results & Conclusion (2/3)

23

Solving the DDR problem (for Linux-boot) for the chip by:

1. Using the DIMM RAM in the TR4

2. Having the PCB (with socket-chip) mounted on the TR4



● We presented a system platform for Trusted Execution 

Environment (TEE) featuring crypto-cores accelerators.

● Completed TEE-Hardware system was developed with various 

configurations to fit specific needs;

such as core options, hybrid options, ISA options, etc.

● The system was implemented and tested on various FPGAs 

(VC707, DE4, TR4) and ASIC (ROHM-180nm).

● The execution time of the TEE with hardware accelerators 

dropped significantly compared to software. 

24

6. Results & Conclusion (3/3)



THANK YOU FOR YOUR LISTENING

25

Acknowledgement

This work is based on results obtained from a project commissioned by the New Energy and 

Industrial Technology Development Organization (NEDO).

The chip tape-out is supported by VLSI Design and Education Center (VDEC), the 

University of Tokyo in collaboration with Synopsys, Inc., Cadence Design Systems, Inc., 

Renesas Electronics Corp., and Nippon Systemware Co., Ltd.


	Slide 1: Trusted Execution Environment (TEE) on Open-source RISC-V Processor System
	Slide 2: Outline
	Slide 3: Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Outline
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Outline
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Outline
	Slide 22
	Slide 23
	Slide 24
	Slide 25: THANK YOU FOR YOUR LISTENING

