THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

IEICE ICDV 2014

An FPGA-based Variable-length
4-Channel Separation FastICA Implementation

*Dinh-Thien Vu, 'Trong-Thuc Hoang, *Ngoc-Hung Nguyen, and $Trong-Tu Bui
Digital Signal Processing and Embedded System Laboratory (DESLab)
Faculty of Electronics and Telecommunications (FETEL)
The University of Science, Ho Chi Minh City (VNU-HCMUS)
227 Nguyen Van Cu St., Ho Chi Minh City, Vietnam
Email: *dinhthien.fetel @gmail.com, T3 {htthuc, nnhung, bttu} @fetel.hcmus.edu.vn

Abstract—Independent Component Analysis (ICA) is one of
the most popular and powerful tool that has been used widely in
the field of signal processing. Due to its complexity, implementing
ICA became a challenge for designers. In this paper, authors
proposed an FPGA-based ICA implementation using FastICA
algorithm. The design can process 4 audio channels with variable
length from 2° to 22° samples. The proposed implementation
achieves the speed of 11.27 Mbps and can process over 1.4 million
samples per second.

I. INTRODUCTION

In the field of signal processing research area, the Indepen-
dent Component Analysis (ICA) is one of the most popular and
powerful technique. ICA algorithm and its implementations
have been developed for over half of a century, and yet it still
drawn attention from many researchers. ICA is the common
method to solve the problem of Blind Source Separation
(BSS) [1]. The principle of the ICA algorithm is the de-
correlation the signals that are of second-order statistics using a
minimum of a priori information. Furthermore, ICA can reduce
higher order statistical dependencies between reconstructed
signals. Because of this, ICA becomes very effective for other
applications beside of BSS problem, such as speech [2], image
[3], and biomedical [4]. To conclude, ICA algorithm is best
suited for unsupervised sources separation while has only the
observation mixed signals.

According to [5], ICA algorithm has many modification
models. The original model is called Standard ICA (sICA).
There is the Convolutive ICA (fICA) model which is a
sICA with FIR filters. The fICA approaches were applied for
biomedical blind sources separation [6]. However, both sICA
and fICA have the same issue that they cannot use the a prior
information regarding the shape of the signals. The temporally
constrained ICA (cICA) [7] gives the solution to overcome
such an issue. The cICA method constrains the temporal
shape of the desired and useful components. Therefore, it can
bring the prior information into the extracting process. JADE
(Joint Approximate Diagonalization of Eigen-matrices) ICA
[8] is another popular ICA method. The primary advantage
of the JADE approach is that it can perform very effectively
on a small number of observations input signals. Informax
(information maximization) ICA has been developed by A. J.
Bell and T. J. Sejnowski [9] and its extended modification is
given by T-W. Lee et al. [10]. Infomax approach based on
the maximization of entropy in a single-layer feed-forward
neural network, it can be classified as an unsupervised learning

ISBN: 978-4-88552-294-9 141

algorithm. The infomax algorithm is best for separating the
super-gaussian distributions sources: “’sharply peak probability
density functions with heavy tails” [10]. However, the draw-
back of infomax is that it cannot separate negative kurtosis,
uniform distribution, sources. Generally, the infomax ICA has
the small range of sources separations. The extend version of it
[10] has been developed for wider range of applications while
maintaining the simplicity. Among presented ICA methods,
FastICA approach is the hardware-friendly algorithm which
first introduced by A. Hyvirinen and E. Oja [11]. It is an
approximation algorithm of standard ICA with fixed-point
iterations to minimize the error. FastiICA method achieves 10 to
100 times faster than conventional methods of ICA. Therefore,
it becomes the most successful linear ICA algorithm due to its
strong advantages of easy to implement and fast convergence.

Although the effectiveness of ICA has been verified by
many researchers, the software solutions cannot satisfy the
real-time requirement due to the complexity of the algorithm.
However, the hardware approaches have to use approximation
models leads to less accuracy in the comparison with the
standard model. As a result, ICA implementations became a
challenge for hardware designers throughout decades. There
are many VLSI implementations have been done [12]-[14].
According to the comparative study of Hongtao Du et al.
[15], the VLSI solutions of ICA algorithms require extremely
efficient hardware design and sufficient IC resources. There
are many techniques and technologies have been used such
as analog CMOS, Analog-Digital mixed signal, ASICs, and
FPGAs. “Each technology has its own characteristics, and
none of them can balance between a high-density low-cost
design and a shorter turnaround development period” [15].
However, new development in FPGAs design methodology is
a promising approach as claimed in [4] and [15].

In this paper, the authors present an FPGA-based imple-
mentation using FastICA algorithm. The proposed system can
separate 4 audio channels with variable length from 2° to
225 samples. The implementation can perform at maximum
frequency of 62 MHz. It can process over 1.4 million samples
per second. With 8-bit audio data, the design achieves the
speed of 11.27 Mbps.

The remainder of this paper is organized as follows. Section
II briefly reviews the FastICA algorithm. Section III proposes
the variable-length 4-channel FPGA implementation. Section
IV presents the experimental results. And finally, Section V
gives the conclusion of the research.

Copyright ©2014 by IEICE

———

- -

= = e .

II. BACKGROUND ALGORITHMS
A. Independent Component Analysis

ICA algorithm can be defied by the statistical variables
model. There are n random resources variables si, ..., s,, that
made n random observations variables x1, ..., x,. Then, it is
a linear combination in the form as can be seen in Eq. 1.

T; = Q3181 + Q282 + ... + AinSn (7, = 1,2,...,71) @))

where, a;;(i,j = 1...n) are real coefficients. By definition,
the s; is statistically independent of each other. Thus, the goal
of ICA algorithm is solving the equation of x = As. The ICA
method can be done only when the following constraints are
satisfied:

e The original sources signals are statistically indepen-
dent with each other.

e Mixing matrix A is a square matrix (source signal and
mixed signal equal) and able to inverse.

e Maximum of only one original source signal has
Gaussian distribution.

ICA algorithm performs a linear transformation y = Wx.
As a consequence, the components y;, with ¢ = 1, N, are
possible mutual independence by maximizing the functions
measuring mutual independence F'yi....yn (yn is the re-
covered signal).

B. FastICA

FastICA method was developed and first introduced by
A Hyvérinen and E. Oja [11] in 1997. The algorithm aims to
reduce the complexity of the origin method by using fixed-
point approach and iteration equations. FastICA has been
proved that it is a hardware-friendly algorithm. FastICA is
used for calculating the non-Gaussian measure of mutual
independence. There are three main steps in FastICA method:
Centering, Whitening, and ICA estimation.

1) Centering: The most basic and necessary preprocessing
is to center data x. It can be done by subtracting mean vector
E{x} in order to make data x a zero-mean variable, as shown
in Eq. 2.

Tnew = T — E{lE})

Vector x is called centering when it has zero-mean. The
reason for centering is that the real signal always has noises,
and the most common noise it the white noise with Gaussian
distribution. Centering is how to eliminate white noise as well
as help the separation process becomes simpler in general.

2) Whitening: Whitening x-vector is based on un-
correlated and covariance x matrix which is the identity
matrix of centered x-vector with zero-mean. Whitening is a
process that transforming the mixing matrix A to orthogonal
by multiplying V' matrix with x-vector data as seen in Eq. 3.

2=V 3)

ISBN: 978-4-88552-294-9 142

where V' whitening matrix is calculated by Eigen Value
Decomposition (EVD) of the covariance matrix. Eq. 4 gives
the EVD computation.

E{zz"} = EDET “

where, E is the orthogonal matrix of eigenvectors of
E{zzT}, and D is the diagonal matrix of its eigenvalues,
D = diag(dl,..,dn). Because of A matrix is orthogonal,
A~1 = V A is also orthogonal. Then, whitening is considered
to solve half of the ICA computation based on W matrix
approximation on the orthogonal space

3) ICA Estimation: To use non-gaussianity in ICA estima-
tion, we must have a quantitative measure of non-gaussianity of
arandom variable, y. There are two well-known aprroximation
methods, negentropy and kurtosis.

Approximating Negentropy: To measure of non-
gaussianity that is zero for a gaussian variable and always
non-negative, one often uses a definition of differential entropy,
called negentropy. Negentropy J is defined as in Eq. 5.

J(y) = H(ygauss) — H(y))

where, Ygauss 18 @ Gaussian random variable of the same
covariance matrix as y. As mentioned above, negentropy has
properties that alway non-negative, and it is zero if and only
if y has a Gaussian distribution. The negentropy estimation
is hard to compute. Therefore, it can be approximated by the
contrast function G; as shown in Eq. 6.

p

J(y) = _[BE{Gi(y)} — E{G:(v)}]? ©6)

=1

The G value must be chosen to not growing too fast. The
following guide as shown in Eq. 7 helps for choosing G.

G1 = ;-log(cosh(aru))
Go = —4exp(—“72) @)
Gy = 1

4

where, 1 < a; < 2 are suitable constants.

Approximating Kurtosis The original measurement of
non-gaussianity is kurtosis or the fourth-order accumulation.
The kurtosis of y is defined by Eq. 8.

Kurt(y) = B{y*} — 3(E{y*})? (8)

The y compoent in Eq. 8 is assumed the unit variance, then
the right-hand side is simplified to E{y*} —3. As a result, the
kurtosis is simply a normalized version of the fourth-moment
E{y*}. For a gaussian distribution of y, the fourth-moment
equals to 3(E{y?})?. Thus, kurtosis is zero for a gaussian
random variables. For most (but not all) non-gaussian random
variables, kurtosis is non-zero.

FPGA Chip

e JTAG-UART CPU

Computer

Avalon Bus
DDR2 SDRAM

offchip fDDR2 SDRAM FastiCA On-chip
Memory 'L Controller IP Core Memory

Fig. 1: FPGA system overview.

III. PROPOSED IMPLEMENTATION
A. FPGA System

The implementation is built by Verilog HDL code. The
ModelSim is used for verify the funtionality, then Quartus is
deployed to synthesize the circuit. The system is built on Altera
Stratix IV with EP4ASGX230KF40C2 FPGA chip.

Fig. 1 gives the overview of the system. The system is made
for testing the FastICA IP Core. Before the start of the IP Core,
four different data of observation sources must be presented
first. To do that, the CPU in FPGA co-operates with the PC
Computer to transfer the data to DDR2 SDRAM by using the
JTAG-UART communication. The on-chip memory is used for
storing the program code of CPU. After the transfer of sources
data is completed, the CPU starts the process of the FastICA
IP Core. Then, the IP Core aceeses to the DDR2 SDRAM
to read the observation sources data. It computes the FastICA
algorithm, then write back the result data to the SDRAM when
the process is completed. After that, the CPU uses the JTAG-
UART to write the result data back to the PC Computer.

B. FastICA IP Core

The block diagram of the FastICA IP Core is shown in
Fig. 2. As can be seen in the figure, the process of the IP
Core can be divided into six major steps as follows: Centering,
Covariance, EVD, Whitening, ICA Estimation, and Compute
Result. There are two DMAs, i.e. Master Read and Master
Write, that help to communicate with the Avalon Bus, and
two fifos are used for transferring the data in and out of the
Core.

First of all, the Centering module reads the data by the
Master Read to compute the mean value and centers the whole
data. The output centered-data are both writen back to RAM by
the Master Write for later use and go directly to the Covariance
module in order to compute the covariance matrix. The EVD
module receives the covariance matrix and calculates the eigen
vectors and eigen values. Then, the eigen vectors and eigen
values are transferred to the Whitening module. The Whitening
module uses the information from EVD module to whiten the
centered-data, then writes the whiten-data to the RAM by the
Master Write. The Whitening module also gives the whiten
matrix to the ICA Estimation module. the ICA Estimation
module needs the whiten matrix along with whiten data to
compute the W matrix. Finally, the Compute Result module
reads the centered-data from the RAM to multiply with the
W matrix from the ICA Estimation module. The result of
that multiplication is also the result data that are writen back
to RAM.

ISBN: 978-4-88552-294-9 143

ICA
Estimation

sng uojery

Master
Read

sNng LO[BAY

Result
Fig. 2: FastICA IP core block diagram.

iClk iRst_n

iLength _:I;'_:_. oLength

716 716
oData_valid

iData_valid .
—————————>» Centering

iData oData
8(x4) “—— 1.15(x4)

Fig. 3: Top-view of Centering module.

iClk iRst_n

iLength 27_;
—"‘——%‘*1 723 oDone
—_—

iData_valid .
Covariance oData
iData
1.15(x16)

1.15(x4) \—m———/

Fig. 4: Top-view of Covariance module.

1) Centering: The top-view of the Centering module is
shown in Fig. 3. The inputs are 4-channel audio data as can
be seen in the figure as the width 8(x4) of iData. The 8-bit
audio are unsigned numbers. After centering, they become 8-
bit singed numbers within ranged of —127 to +128. By not
effect on the final result, the data are assumed to fall in the
ranged of —1 to 41. Then, 8-bit signed numbers become 1.7-
bit fixed-point signed numbers. Then, the mean value is a
1.7-bit fixed-point signed number, too. However, in order to
increase the accuracy, the mean value and centered-data take
more 8 bits behind the dot. Then, they become 1.15-bit fixed-
point signed numbers as can be seen in Fig. 3. The Length
signals are used for giving the total number of input samples.

2) Covariance: Fig. 4 gives the top-view of the Covariance
module. The module receives the centered-data directly from
the Centering module. It needs the iLength signal to known
the total number of samples in order to compute the covariance
matrix. With 4-channel, the covariance matrix is a 4 x4 matrix.
Then, it has 16 numbers in total which are transferred to the
next module by the oData signals. The oDone signal triggers
the process of the next module.

3) EVD: The top-view of the EVD module is given by
Fig. 5. The process of EVD module is to compute the eigen
vectors and eigen values. The module receives covariance
matrix from the i Engata and ¢ Data signals. When the process
is completed, oDone signal is activated. With 4-channle,
there are 4 eigen vectors which make the F matrix, and 4
eigen values which make the D matrix. The oMatriz_FE and
oMatriz_D give the E and D matrices, respectively.

iClk iRst_n

iy

oDone
iEn_data >
— . oMatrix_E
; EVD 7 >
iData 1.15(x16))
oMatrix_D
1.15(x16) L =

" 1.15(x4)

Fig. 5: Top-view of EVD module.

The block diagram of the EVD module is shown in Fig. 6.
The EVD module is based on the Jacobi eigen value algorithm.
It requires a iteration equations to achieve the goal. Then,
the Controller is used for control the iteration process. CS
Eigen module computes the values for each iteration. During
the process, a Matrix Multiplication Unit (MMU) is needed
to multiply matrices. MMU is controlled by the CS Eigen
module, and it is also used for store the result for each step.

4) Whitening: Fig. 7 shows the top-view of the Whitening
module. It uses the avalon bus signals to communicate with
DMAs in order to read the centered-data and write the whiten-
data. The whiten-data are stored in the SDRAM at a different
offset with the centered-data. The oFEmn_matriz signal is
asserted when the process is done. The oW h_matriz gives
the whiten matrix to the next module. The whiten matrix is a
4 x 4 matrix with 1.15-bit fixed-point signed numbers.

5) ICA Estimation: As mentioned above, there are two
mainstreams approaches for the estimation process: negen-
tropy and kurtosis. However, kurtosis has been proved that
it is suitabled for hardware designs in the comparison with
negentropy approaches. In kurtosis method, there are many
iteration equations that could satisfy the requirement of the
algorithm. They are pow3, tanh, gauss, and skew as can be
seen in Eq. 9, Eq. 10, Eq. 11, and Eq. 12, respectively.

w= %X(X%)3 - 3B ©)
hypTan = tanh(a; XTw)
w= % (XhypTan — a1y (1 — hypTan?)Tw)

(10)

L §
w= —]\—](Xgauss - Z(dGauss) w) (11)
w= lX(XTw)2 (12)

N

In the aboved equations of kurtosis method, N is the
number of samples, w is the decomposition matrix which also
is the goal of the algorithm, X is the data after centering and
whitening, B and a; and gauss are the parameters.

The tanh, Eq. 10, and gauss, Eq. 11, equations have
the high complexity that leads to sufficient resouces cost.
The skew equation, Eq/ 12 is the simplest of all. However,
it has been verified that cannot achieve the requirement of
accuracy. As a result, the pow3 equation, Eq. 9 is chosen to
be implemented.

ISBN: 978-4-88552-294-9 144

oDone
Controller >
iEn_data -
A
cs Y} Matix
iData 8 Multiplication
Exgen) Unit
1.15(x16) T v oMatrix_E
~ =
115618) o Matrix_D
. o
1.15(x4)
Fig. 6: EVD Block Diagram.
iClk iRst_n
iEn_data _/-37—‘:_ iData_valid |
From iMatrix_E iData_mean
EVD
e 1.15(x16) 1.15(x4) To/From
iMatrix
— Whitening r A\éalon
. 1.15(x4)) =
To ICA oEn_matrix oData_valid
Estimation oWh_matrix oData

1.15{x16) ~———" 1.15(x4)

Fig. 7: Top-view of Whitening module.

Fig. 8 shows the top-view of the ICA Estimation module.
The module receives the whiten-data from the avalon bus
through DMAs. And with the whiten matrix transferred by
the 1En_data and tWh_matrixz signals, the ICA Estimation
module computes the decomposition matrix 1. The W matrix
is given to the Compute Result module by the oDone and
oMatriz_W signals. The W matrix is a 44 matrix upon the
4-channel separation application.

iClk iRst_n
iEn_data :\]7—:
From
Whitenin i i i
g | iWh_matrix iData_valid From
1.15(x16) ICA Avalon
To oDone Estimation iData Bus
Compute
Result oMatrix_W 1.15(x4)
1.15(x16) ~~—--—r’
Fig. 8: Top-view of ICA Estimation module.
iClk iRst n
/_'\]7_: iData_valid
- iEn_data iData To/From
Estimatio Compute | 1 15(x4) Avalon
"1 iMatrix_W Result oData_valid Bus
1.15(x16) oData
7 s

~——/ 8(x4)

Fig. 9: Top-view of Compute Result module.

TABLE I: Resources experimental results compared with other implementations.

Proposed Design [16] [17] [18] [19]
Algorithm FastICA Parallel ICA ICNN Optimized ICA Infomax
FPGA Chip Altera Stratix IV SGX230 Xilinx Virtex VIOOOE | Xilinx Virtex XCV 812 E | Xilinx Virtex II XC2V 8000 | Altera Cyclone II C35F
No. of ch 1 4 N/A N/A N/A 4
Length of sampl 29 o 22° 6,000 500 10,000 N/A
Data width 8 N/A N/A 16 8
Sample rates (kHz) 1,408 N/A N/A 57.53 64
Slices N/A 11,318 12,271 5,500 N/A
Combinational logic 16,099 19,114 N/A N/A 16,605
Registers 10,934 6,061 N/A N/A N/A
Memory bits 9,216 N/A N/A N/A 24,576
Other resources 645 DSP block 18-bit elements N/A N/A N/A N/A
Frraz (MHz) 62 20.161 50 185.58 68

6) Compute Result: The top-view of the Compute Result
module is shown in the Fig. 9. After receiving the decom-
sosition W matrix by ¢En_data nad iMatriz_W signals,
“»= Compute Result module reads the centered-data by avalon
sus signals through DMAs. The centered-data are multiplied
with the decomposition W matrix. And the result of that
multiplication is the final result of the ICA algorithm.

Naturally, the result data are 1.15-bit fixed-point signed
=umbers due to the width of both W matrix and centered-data.
However, owing to the original audio data are 8-bit unsigned
sumbers, the result data that writen back to PC Computer
must be 8-bit unsigned numbers, too. It can done by removing
% least significant bits of the multiplication result which has
the width of 1.15-bit fixed-point signed. Then, the result data
secome 1.7-bit fixed-point signed numbers. By considering
the dot of the fixed-point doesnot exists, equals to multiply
with 27, then they are 8-bit signed numbers. Finally, the most
significant bit is reversed (i.e. by NOT logic gate), equals to
2dd the results with +128 value, then the data from 8-bit
signed numbers become 8-bit unsigned numbers. After that,
the results data are transferred to the PC Computer via oData
znd oData_valid signals in order to complete the whole ICA
computation.

IV. EXPERIMENTAL RESULTS

The proposed implementation is designed and verified by
Verilog HDL code and Altera Stratix IV SGX230 FPGA chip.
Tab. I gives the resources results and compared with the
other implementations in [16]-[19]. The design claimed to has
the maximum frequency of 62 MHz as shown in the table.
The design consumes over 9,000 memory bits, and most of
the memory resources are used for fifos. In the design, all
fixed-point multiplications and divisions along with all super
mathematical computations such as square root are built based
on the CORDIC (COordinate Rotation DIgital Computer)
algorithm. By using CORDIC, the less memory resources are
needed, and the timing performance is improved.

With the sample rates at 1,408 samples per second, 8-bit
data width, and F)z,, equals 62 MHz, the proposed design
achieves the speed of 11.27 mega-bit per second (MBps). In
the comparison with other designs, it is clear that the proposed
implementation has better timing performances. The strong
advantages of the design is the variable sample-length from 2°
to 225 samples for each processing. With the common audio

ISBN: 978-4-88552-294-9 145

sampling rate of 44.1 kHz, the proposed design can separate
an audio wave that has the length about 11.61 milisecond to
12 minutes 40.87 second.

The results data are compared with the ideal results
extracted from the MATLab software tool. The MSE (Mean
Square Error) is deployed to quantitive the comparison. The
implementation results have been tested under various length
and audio samples. After all, the average MSE value approxi-
mately equals to le — 3.

V. CONCLUSION

A variable-length 4-channel FPGA-based implementation
has been presented in this paper. The system is built on
Altera Stratix IV SGX230 FPGA chip for the verification.
FastICA algorithm is chosen for the implementation along
with the pow3 kurtosis equation. The proposed design can
separate 4-channel with the length vary from 2° to 225 samples
for each time of processing. The experimental results show
that the implementation achieves maximum frequency of 62
MHz with the speed of 11.27 Mbps. The design claimed to
process over 1.4 million samples per second with 8-bit res-
olution input audio wave. The proposed implementation uses
CORDIC algorithm to compute the fixed-point multiplications
and divisions along with super mathematical computation.
By deploying CORDIC method, system reduces the memory
resources also with improves the timing performances. The
results are compared with the ideal results from MATLab in
order to quantitive the accuracy of the implementation. And
the MSE value it achieves is approximated to le — 3.

ACKNOWLEDGMENT

This work was granted under project C2014-18-04 by the
Vietnam National University.

REFERENCES

[1] T.W.Lee, M. S. Lewicke, and T. J. Sejnowski, ”ICA mixture models for
unsupervised classification of non-gaussian classes and automatic context
switching in blind signal separation,” in IEEE Trans. on Pattern Anal.
Mach. Intell., Vol. 22, No. 10, pp. 1078-1089, Oct. 2000.

[2] T.W. Lee, “Independent Component Analysis: Theory and Applications,”
Boston, MA: Kluwer, 1998.

[3] M. Lennon, G. Mercier, M. C. Mouchot, and L. Hubert-Moy, “Indepen-
dent component analysis as a tool for the dimensionality reduction and

the representation of hyperspectral images,” in Proc. SPIE Remote Sens.,
Vol. 4541, pp. 2893-2895, Toulouse, France, Sep. 2001.

TABLE I: Resources experimental results compared with other implementations.

Proposed Design [16] [17] [18] [19]
Algorithm FastICA Parallel ICA ICNN Optimized ICA Infomax
FPGA Chip Altera Stratix IV SGX230 Xilinx Virtex VIO00E | Xilinx Virtex XCV 812 E | Xilinx Virtex IT XC2V 8000 | Altera Cyclone I C35F
No. of channel 4 N/A N/A N/A 4
Length of samples 29 to 22° 6,000 500 10,000 N/A
Data width 8 N/A N/A 16 8
Sample rates (kHz) 1,408 N/A N/A 57.53 64
Slices N/A 11,318 12,271 5,500 N/A
Combinational logic 16,099 19,114 N/A N/A 16,605
Reg S 10,934 6,061 N/A N/A N/A
Memory bits 9,216 N/A N/A N/A 24,576
Other resources 645 DSP block 18-bit elements N/A N/A N/A N/A
Fhrror (MHz) 62 20.161 50 185.58 68

6) Compute Result: The top-view of the Compute Result
module is shown in the Fig. 9. After receiving the decom-
position W matrix by iEn_data nad iMatriz_W signals,
the Compute Result module reads the centered-data by avalon
bus signals through DMAs. The centered-data are multiplied
with the decomposition W matrix. And the result of that
multiplication is the final result of the ICA algorithm.

Naturally, the result data are 1.15-bit fixed-point signed
numbers due to the width of both W matrix and centered-data.
However, owing to the original audio data are 8-bit unsigned
numbers, the result data that writen back to PC Computer
must be 8-bit unsigned numbers, too. It can done by removing
8 least significant bits of the multiplication result which has
the width of 1.15-bit fixed-point signed. Then, the result data
become 1.7-bit fixed-point signed numbers. By considering
the dot of the fixed-point doesnot exists, equals to multiply
with 27, then they are 8-bit signed numbers. Finally, the most
significant bit is reversed (i.e. by NOT logic gate), equals to
add the results with +128 value, then the data from 8-bit
signed numbers become 8-bit unsigned numbers. After that,
the results data are transferred to the PC Computer via oData
and oData_valid signals in order to complete the whole ICA
computation.

IV. EXPERIMENTAL RESULTS

The proposed implementation is designed and verified by
Verilog HDL code and Altera Stratix IV SGX230 FPGA chip.
Tab. I gives the resources results and compared with the
other implementations in [16]-[19]. The design claimed to has
the maximum frequency of 62 MHz as shown in the table.
The design consumes over 9,000 memory bits, and most of
the memory resources are used for fifos. In the design, all
fixed-point multiplications and divisions along with all super
mathematical computations such as square root are built based
on the CORDIC (COordinate Rotation DIgital Computer)
algorithm. By using CORDIC, the less memory resources are
needed, and the timing performance is improved.

With the sample rates at 1,408 samples per second, 8-bit
data width, and Fjs,, equals 62 MHz, the proposed design
achieves the speed of 11.27 mega-bit per second (MBps). In
the comparison with other designs, it is clear that the proposed
implementation has better timing performances. The strong
advantages of the design is the variable sample-length from 2°
to 22° samples for each processing. With the common audio

ISBN: 978-4-88552-294-9 145

sampling rate of 44.1 kHz, the proposed design can separate
an audio wave that has the length about 11.61 milisecond to
12 minutes 40.87 second.

The results data are compared with the ideal results
extracted from the MATLab software tool. The MSE (Mean
Square Error) is deployed to quantitive the comparison. The
implementation results have been tested under various length
and audio samples. After all, the average MSE value approxi-
mately equals to le — 3.

V. CONCLUSION

A variable-length 4-channel FPGA-based implementation
has been presented in this paper. The system is built on
Altera Stratix IV SGX230 FPGA chip for the verification.
FastICA algorithm is chosen for the implementation along
with the pow3 kurtosis equation. The proposed design can
separate 4-channel with the length vary from 2° to 225 samples
for each time of processing. The experimental results show
that the implementation achieves maximum frequency of 62
MHz with the speed of 11.27 Mbps. The design claimed to
process over 1.4 million samples per second with 8-bit res-
olution input audio wave. The proposed implementation uses
CORDIC algorithm to compute the fixed-point multiplications
and divisions along with super mathematical computation.
By deploying CORDIC method, system reduces the memory
resources also with improves the timing performances. The
results are compared with the ideal results from MATLab in
order to quantitive the accuracy of the implementation. And
the MSE value it achieves is approximated to le — 3.

ACKNOWLEDGMENT

This work was granted under project C2014-18-04 by the
Vietnam National University.

REFERENCES

[1] T. W. Lee, M. S. Lewicke, and T. J. Sejnowski, "ICA mixture models for
unsupervised classification of non-gaussian classes and automatic context
switching in blind signal separation,” in IEEE Trans. on Pattern Anal.
Mach. Intell., Vol. 22, No. 10, pp. 1078-1089, Oct. 2000.

[2] T.W. Lee, "Independent Component Analysis: Theory and Applications,”
Boston, MA: Kluwer, 1998.

[3] M. Lennon, G. Mercier, M. C. Mouchot, and L. Hubert-Moy, “Indepen-
dent component analysis as a tool for the dimensionality reduction and

the representation of hyperspectral images,” in Proc. SPIE Remote Sens.,
Vol. 4541, pp. 2893-2895, Toulouse, France, Sep. 2001.

[4] Lan-Da Van, Di-You Wu, and Chien-Shiun Chen, “Energy-Efficient
FastICA Implementation for Biomedical Signal Separation,” in IEEE
Trans. on Neural Networks, Vol. 22, No. 11, pp. 1809-1822, Nov. 2011.

[51 M. Phegade, and P. Mukherji, "ICA based ECG signal denoising,” in
Proc. of Int. Conf. on Advances in Computing, Communications and
Informatics (ICACCI), pp. 1675-1680, Aug. 2013.

[6] M. Milanesi, N. Vanello, V. Positano, MF Santarelli, R. Paradiso, D.
De Rossi, and L. Landini, "Comparative evaluation of decomposition
algorithms based on frequency domain blind source separation of
biomedical signals,” in Proc. of Int. Conf. on Mathematical Methods
and Computational Techniques in Electrical Engineering WSEAS, pp.
324-329.

[71 Wei Lu and J. C. Rajapakse, ”Approach and applications of constrained
ICA,” in IEEE Trans. on Neural Networks, Vol. 16, No. 1, pp. 203-212,
Jan. 2005.

[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Independent compo-
nent analysis and (simultaneous) third-order tensor diagonalization,” in
IEEE Trans. on Signal Processing, Vol. 49, No. 10, pp. 2262-2271, Oct.
2001.

[91 A.J. Bell and T. J. Sejnowski, ”An information maximization approach
to blind separation and blind deconvolution,” Neural Computation, Vol.
7, No. 6, pp. 1129-1159, Nov. 1995.

[10] T-W. Lee, M. Girolami, and T. J. Sejnowski, “Independent Component
Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian
and Super-Gaussian Sources,” Neural Computation, Vol. 11, pp. 417-441,
1999.

[11] A. Hyvirinen and E. Oja, ”A fast fixed-point algorithm for independent
component analysis,” Neural Computation, Vol. 9, No. 7, pp. 1483-1492,
1997.

[12] Chiu-Kuo Chen, E. Chua, C. Fu, Shao-Yen Tseng, and Wai-Chi Fang,
”A hardware-efficient VLSI implementation of a 4-channel ICA proces-
sor for biomedical signal measurement,” in Proc. of IEEE Int. Conf. on
Consumer Electronics (ICCE), pp. 607-608, Jan. 2011.

[13] Wei-Yeh Shih, Jui-Chieh Liao, Kuan-Ju Huang, Wai-Chi Fang, G.
Cauwenberghs, and Tzyy-Ping Jung, ”An efficient VLSI implementation
of on-line recursive ICA processor for real-time multi-channel EEG
signal separation,” in Proc. of IEEE Int. Conf. on Engineering in
Medicine and Biology Society (EMBC), pp. 6808-6811, July 2013.

[14] Kuan-Ju Huang, Wei-Yeh Shih, Jui Chung Chang, Chih Wei Feng,
and Wai-Chi Fang, ”A pipeline VLSI design of fast singular value
decomposition processor for real-time EEG system based on on-line
recursive independent component analysis,” in Proc. of IEEE Int. Conf.
on Engineering in Medicine and Biology Society (EMBC), pp. 1944-
1947, July 2013.

[15] Hongtao Du, Hairong Qi, and Xiaoling Wang, ”Comparative Study of
VLSI Solutions to Independent Component Analysis,” in IEEE Trans.
on Industrial Electronics, Vol. 54, No. 1, pp. 548-558, Feb. 2007.

[16] Hongtao Du and Hairong Qi, "An FPGA implementation of parallel
ICA for dimensionality reduction in hyperspectral images,” in Proc. IEEE
Int. of Geoscience and Remote Sensing Symposium (IGARSS ’04), Vol.
S, pp. 3257-3260, Sept. 2004.

[17] AB. Lim, J. C. Rajapakse, and AR. Omondi, “Comparative study of
implementing ICNNs on FPGAs,” in Proc. of Int. Joint Conf. on Neural
Networks (IJCNN ’01), Vol. 1, pp. 177-182, 2001.

[18] M. Ounas, S. Chitroub, R. Touhami, M. Yagoub, and S. Gaoua, "Digital
circuit design for FPGA based implementation of ICA for real time
Blind Signal Separation,” in Proc. of Int. Conf. on Microelectronics (ICM
2008), pp. 60-63, Dec. 2008.

[19] Wei-Chung Huang, Shao-Hang Hung, Jen-Feng Chung, Meng-Hsiu
Chang, Lan-Da Van, and Chin-Teng Lin, "FPGA implementation of 4-
channel ICA for on-line EEG signal separation,” in Proc. of IEEE Int.
Conf. on Biomedical Circuits and Systems (BioCAS 2008), pp. 65-68,
Nov. 2008.

ISBN: 978-4-88552-294-9 146

