

THE INSTITUTE OF ELECTRONICS, IEICE ICDV 2012

INFORMATION AND COMMUNICATION ENGINEERS

Copyright ©2012 by IEICE

A Real-time Object-recognition System Based on PCNN Algorithm

Trong-Thuc HOANG
†
 Ngoc-Hung NGUYEN

†
 Xuan-Thuan NGUYEN

†
 Trong-Tu BUI

†

†
The University of Science, Ho Chi Minh City 227 Nguyen Van Cu St., Dist.5, Ho Chi Minh City, Vietnam

E-mail:
†
trongthuc.hoang@gmail.com

†
{nnhung, nxthuan, bttu}@fetel.hcmus.edu.vn

Abstract In this paper, the authors present two hardware architectures of Pulse-Coupled Neural Network (PCNN) which

can be applied to real-time object-recognition systems. They are RAM-based model and pipelined model. Both models can

generate a time-signal vector at the speed of one vector per video frame. Two architectures have been successfully implement-

ed on FPGA chips. Based on these models, a complete recognition system including a camera, a PCNN core, a search engine

and a DVI controller has been built and tested so as to verify the operation of the models. The experiment results show that the

percentage of recognition is 92.8%.

Keyword PCNN, Pulse-Coupled Neural Network, Object recognition, Real-time, hardware.

1. Introduction

Pulse-Coupled Neural Network (PCNN) is biologically

inspired neural network based on cat’s visual cortical

neurons. Since introduced by Eckhon in 1990 [1], PCNN

model has proven its vital role in digital image processing,

such as image segmentation [2], image thinning [3], mo-

tion detection [4], pattern recognition [5], face detection

[6] etc.

Although the PCNN is suitable for many fields of image

processing, it is difficult to achieve real-time processing

by software implementation. Hardware implementation is

a solution to overcome such an issue. Javier et al [7] pre-

sented an FPGA system that can operate at high speed, but

it is only suitable for those applications that require

one-time operation. In the object recognition system, it is

required iterative processing of PCNN. Ranganath et al [8]

proposed such a hardware design, but it needs multiple

PCNN layers and dynamic parameters. In our previous

work [9], an implementation using PCNN algorithm was

proposed for feature extraction at high speed. However,

the hardware time-signal vector generated by hardware

was not perfectly identical to the ideal vector generated by

software implementation. In this paper, we present two

PCNN hardware architectures which can generate

time-signal vector highly similar to the ideal one. They are

RAM-based model and pipelined model. The RAM-based

model utilizes RAMs to simulate the neurons network. By

an N-cycle processing, the RAM-based model generates

one N-element time-signal vector, which can be used asa

feature vector. The pipelined model divides the operation

into N stages; each stage generates one of N elements. The

resource costs of RAM-based model depend on the image

size and that of the pipelined model mainly depend on the

number element of time-signal vector. Both models can

generate time-signal vector at the speed of one vector per

video frame. Based on these architectures, a real-time

object-recognition system has been built , including cam-

era, PCNN core, search engine, and DVI controller. The

system can recognize an object based on the image

time-signal vector generated by the PCNN core. Each

image generates a unique vector. However, if two images

contain similar objects, they will generate similar vectors.

The remainder of this paper is organized as follows.

Section 2 briefly reviews the PCNN model and shows an

implementation of a neuron. Section 3 presents the ob-

ject-recognition system. Section 4 proposes two PCNN

hardware architectures. Section 5 shows the experiment

results of two models and the system performance. The

conclusion is given in section 6.

2. The PCNN model

2.1. A neuron structure

A single neuron structure is shown in Fig. 1 (Fig. 1 in

[10]). The neuron consists of three parts: feeding field (the

receptive field or dendritic tree in some references), link-

ing modulation, and pulse generator. The PCNN model is

described as iteration by the following equations.

 𝐹𝑖𝑗[𝑛] = 𝑆𝑖𝑗 + 𝐹𝑖𝑗[𝑛 − 1]𝑒−𝛼𝐹

+ 𝑉𝐹 ∑ 𝑀𝑖𝑗𝑘𝑙

𝑘𝑙

𝑌𝑘𝑙[𝑛 − 1] (1)

 𝐿𝑖𝑗[𝑛] = 𝐿𝑖𝑗[𝑛 − 1]𝑒−𝛼𝐿

+ 𝑉𝐿 ∑ 𝑊𝑖𝑗𝑘𝑙

𝑘𝑙

𝑌𝑘𝑙[𝑛 − 1] (2)

 𝑈𝑖𝑗[𝑛] = 𝐹𝑖𝑗[𝑛](1 + 𝛽𝐿𝑖𝑗[𝑛]) (3)

 𝑇𝑖𝑗[𝑛] = 𝑇𝑖𝑗[𝑛 − 1]𝑒−𝛼𝑇 + 𝑉𝑇𝑌𝑖𝑗[𝑛 − 1] (4)

 𝑌𝑖𝑗[𝑛] = {
1 → 𝑈𝑖𝑗[𝑛] > 𝑇𝑖𝑗[𝑛]

0 → 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

According to those equations, the operation of a single

neuron at step n depend on its corresponding pixel (𝑆𝑖𝑗),

previous pulses from surrounding neurons (𝑌𝑘𝑙[𝑛 − 1]), and

the last internal activities of the neuron itself (𝐹𝑖𝑗[𝑛 − 1],

 𝐿𝑖𝑗[𝑛 − 1] , and 𝑇𝑖𝑗[𝑛 − 1]). M and W are two synaptic

weight matrixes. VF, VL, VT, 𝛼𝐹 , 𝛼𝐿 , 𝛼𝑇 , and 𝛽 are the

PCNN parameters and should be considered as constant s.

The time-signal vector can be generated by summing the

number of pulses at the output of PCNN, which is shown

by the equation (6), where n is the iteration step. With N

steps, we have the N elements time-signal vector (vector

G), is unique for each image.

 𝐺[𝑛] = ∑ 𝑌𝑖𝑗[𝑛]

𝑖𝑗

 (6)

2.2. A neuron implementation

If the field of surrounding neurons is too large, the

PCNN loses its segmentation quality, and the time-signal

vector is going to saturate in several steps. With saturated

vector, there is difficult to identify the difference among

images. However, choosing a small field will reduce the

feature extraction ability of PCNN. A matrix of 3x3 sur-

rounding neurons is the appropriated field. Two synaptic

weight matrixes M and W are selected equally.

The top-view of hardware implementation for a neuron

is shown in Fig. 2. The input is 8-bit grayscale image. The

signal iS_data is the corresponding pixel. iY_data are the

pulses from surrounding neurons and iF_data, iL_data and

iT_data represent for the internal variables in the previous

step. oY_data transmits the neuron pulse while the others

transmit the internal variables. The details of the impl e-

mentation are shown in Fig. 6. These multiple parameters

aF, aL and aT represent for exp (−𝛼𝐹) , exp(−𝛼𝐿) and

exp (−𝛼𝑇) in above equations, respectively.

Fig. 2. Top-view of a neuron implementation.

Fig. 3. The system block diagram.

3. The object-recognition system

The block diagram of the object-recognition system has

shown in Fig. 3. A camera transmits the image data to the

system with 640x480 image size and 24-bit color per pixel.

The camera controller writes the image data into DDR2

RAM and Grayscale resampler by its memory-mapped

interface and streaming interface, respectively. The DVI

controller reads raw image data from DDR2 RAM and

displays them on a monitor. Grayscale resampler converts

24-bit color to 8-bit grayscale. Scaler and clipper reduce

the image size into 128x128 pixels. After this, the PCNN

core extracts time-signal vector based on the received

image, and then transmits i t to search engine through

Avalon bus. The search engine computes the image en-

tropy by Equation (7) and (8). The search engine also

consist the templates which contain sample object vectors.

The comparison between the computed entropy and the

templates is done by the MSE values. The MSE values are

computed by Equation (9). As soon as the search engine

had finished its work, it notices the results by GPIO (i.e.

LEDs, LCD, etc.).

 𝑝𝑛 =
𝐺[𝑛]

𝑃𝐻𝑉
 (7)

 𝐸𝑛(𝑝) = −𝑝𝑛𝑙𝑜𝑔2𝑝𝑛 − (1 − 𝑝𝑛)𝑙𝑜𝑔2(1 − 𝑝𝑛) (8)

 𝑀𝑆𝐸 =
1

𝑁
∑ [𝐸𝑛(𝑝) − 𝐸𝑛

′ (𝑝)]2

𝑛

 (9)

where, G[n] is the vector, PHV is the number of total

image pixels, pn is the probabilities when neurons are

activated, i.e. 𝑌𝑖𝑗[𝑛] = 1, 𝐸𝑛(𝑝) is the image entropy, and

𝐸𝑛
′ (𝑝) is the sample entropy, respectively.

4. Proposed hardware architectures

The 8-bit grayscale image has HxV resolution. P HV de-

notes the number of the total pixels in the image, i.e. H*V.

The output vector G has N elements.

Fig. 4. PCNN RAM-based block diagram.

Fig. 5. The operation of RAMs.

4.1. RAM-based architecture

PCNN model is a two-dimensional network with a 1:1

corresponding between image pixels and network neurons.

Instead of implementing a network that contains P HV node

neurons, the cost can be reduced by some neurons for

computing and RAMs for storing the variables of the

network while the system processing.

The system is mainly composed of two parts: the

memory part (MP) and the logic part (LP) as shown in Fig.

4. MP contains three RAMs to stores the input image

(RAM_S), the internal variables (RAM_FLT) and the

output binary image (RAM_Y). Each RAM has the same

amount of memory cells, i.e. PHV cells. However, each

RAM has the different cell width. RAM_S, RAM_FLT, and

RAM_Y have 8 bits, 28 bits and 1 bit per memory cell ,

respectively. The total RAM capacity can be calculated in

Equation (10). In LP, the controller controls the RAM

address lines while RAM data lines are connected to the

block neuron. Counter G counts the pulse produced by the

block neuron to computes the point value.

 𝐵𝑅𝐴𝑀 = 37𝐻𝑉 (𝑏𝑖𝑡) (10)

The operation divided into two phases: inactive phase

and active phase. In the inactive phase, the video frame is

written into RAM_S. When the writing process is finish,

the system turns into active phase to generate a vector G.

To avoid the overlapping of adjacent frames, RAM_S has

to be read-only during the active phase. RAM_FLT and

RAM_Y have the initial value of zeros. There are P HV

nodes in the network and their variables are stored in

RAMs. LP accesses to RAMs and iterates the processing N

cycles in order to generate an N-element vector G. In the

basic model, the block neuron is considered as a single

neuron. With one neuron, LP can process one node per

clock cycle. The details of communication between LP and

RAMs are described in Fig. 5. A i are the address of node[i].

d i are the last data of node[i], and D i are the new data of

node[i] that will be written back into RAMs. After P HV

clock cycles, LP generates one of N elements of vector G.

After N-cycle processing, the system generates a full

vector G, and the active phase is completed. The system

returns to the inactive phase.

Since block neuron contains a single neuron, LP can

process only one node per clock cycle . With a group of

neurons implemented in block neuron instead of one, the

system can speed up the processing time. For example, if

block neuron includes a matrix of 2x2 neurons, the system

can lower the processing time four times. The LP resource

costs are affected by the number of neurons in block neu-

ron. However, the total RAM capacity in the MP remains

constantly. The number of neurons in block neuron de-

pends on the length of vector G. In order to generate vec-

tor at the speed of one vector per frame, the number of

neurons has to be N.

Fig. 7. The PCNN system with N stages pipelined.

Fig. 8. The processing times of N stages are alternated.

Fig. 9. Top-view of a general stage design.

4.2. Pipelined architecture

Pipelined model is constructed based on the separation

of the operation into N independent stages, each stage

computes one of N elements vector G.

In order to achieve its goal, a stage needs the infor-

mation of all node neurons in the network from the pre-

vious stage and the input image pixel. The top -view of one

stage is shown in Fig. 9. At every clock when iValid is

asserted, a stage receives one node information including

pixel values (i.e. iData_S), internal variables (i.e. iData_F,

iData_L, iData_T), and pulse (i.e. iData_Y). As soon as a

stage has finished its work, it asserts oDone signal. The

oG signal carries the final point value. The first and the

last stage are designed differently with the common design

in Fig.9. Owing to the initial value of neuron variables and

pulse are zeros, stage 1 needs only the input pixel value to

operate. The final stage has not to transmit its network

information, and then the output signals are only oDone

and oG. Fig. 7 describes the system with N-stage pipelin-

ing.

A i, j[n] represents a node in the network where i ∈ (1,H)

is the column number, j ∈ (1,V) is the row number, and n

∈ (1,N) is the number of stage. In order to operate, node

A i, j[n] requires the pixel value (S i, j), internal variables

(F i, j[n-1], L i, j[n-1], T i, j[n-1]), and pulses from 3x3 matrix

surrounding neurons (Y i-1 , j-1[n-1], Y i-1 , j[n-1], Y i-1 , j+1[n-1],

Y i, j-1[n-1], Y i, j[n-1], Y i, j+1[n-1], Y i+1, j-1[n-1], Y i+1, j[n-1],

Y i+1, j+1[n-1]). A stage starts the processing with node

A1,1[n] and finishes with node AH,V[n]. Node A1,1[n] is at

the corner of the network which has four surrounding

neurons (Y1,1[n-1], Y1,2[n-1], Y2,1[n-1], Y2,2[n]) instead of

nine ones. Stage n starts the processing whenever it has

enough information to process its first node, so stage[n]

has to wait for stage[n-1] first (H+2) nodes. The pro-

cessing times of N-stage are alternated as shown in Fig. 8 .

The system is ready to receive a new input image after

stage 1 done, and one vector G is generated each time

stage N done. A stage needs buffers to store (H+2) nodes

information results from deviation between two adjacent

stages processing time. There are five buffers to store

pixel values, internal variables and pulses as shown in Fig.

10. Buffers are constructed by shift registers . The pixel

values and internal variables buffers utilize (H+2) regis-

ters for each buffer. The pulses of surrounding neurons are

3x3 matrixes leading to three lines buffers are required for

storing them. With the different data width of S i, j, F i, j[n-1],

L i, j[n-1], T i, j[n-1], and Y[n-1], the total buffers capacity

between two adjacent stages can be calculated by Equation

(11). The entire buffers capacity in the system can be

calculated by Equation (12).

 𝐵 = 39𝐻 + 72 (𝑏𝑖𝑡) (11)

 𝐵𝑃𝑖𝑝𝑒 = (𝑁 − 1) ∗ 𝐵 = (𝑁 − 1) ∗ (39𝐻 + 72) (𝑏𝑖𝑡) (12)

Fig. 10 describes a stage design of including buffers,

one PCNN neuron, controller, and counter. By counting

the iValid signal, the controller knows the status of the

previous stage. The controller generates the oValid signal

and controls the internal activities of the stage. Counter

count the pulse carried by oData_Y output signal to com-

putes the point value of vector G. Counter reset by the

controller each time the stage done. Because the first stage

needs only input pixel values to operate, its input signals

are only iData_S and iValid. Therefore, there are no buff-

ers in the first stage. The last stage is similar with com-

mon design in Fig. 10, but the neuron output signal is only

oY_data, and the controller does not need to generate the

oValid signal.

Table 2. The PCNN parameters.

Parameter ∝𝐹 ∝𝐿 ∝𝑇 𝑉𝐹 𝑉𝐿 𝑉𝑇 𝛽

Value 0.5 1 1 0.02 0.02 10 0.2

Fig. 10. A stage design.

Fig. 11. The comparison between vectors.

5. Experiment results

Both two models have the same processing speed re-

garding the resource costs. The pipelined model resembles

the RAM-based model in that the number of implemented

PCNN neuron is the same. The difference of resource costs

came from Equation (10) and Equation (12). As can be

seen in two equations, the resource costs of RAM-based

model depend on the image resolution and that of the

pipelined model mainly depend on the element number of

vector G. Based on requirements of image resolution and

vector length, the better model can be selected by above

two equations.

Table 1. Hardware usage results of the PCNN cores and

search engine.

 RAM-based

model

Pipelined

model

Search

Engine

ALUTs 12,739 9,423 234

Register 1.84 KB 17.5 KB 7 B

Memory (KB) 72 0 0.44

DSP block 86 38 8

Fmax (MHz) 54.67 70.61 146.49

Fig. 12. The MSE values between the input image and the

sample images.

Two models are verified by the Modelsim simulator and

implemented on Altera Stratix III board with an

EP3SL150F1152C2 FPGA chip. The system parameters H,

V, and N are 128, 128, and 32, respectively. It means that

the image size is 128x128, and time-signal vector length is

32 elements. Tab. 1 shows the resource utilization of two

architectures and search engine. From the Tab. 2, PCNN

parameters are selected for object-recognition applications.

Fig. 11 shows the comparison between three vectors: the

ideal vector is calculated by Matlab and others are ob-

tained from hardware designs. It is clear that both models

generate vectors which are highly similar to the ideal one.

An image has a unique vector which represents for the

object in that image. As mentioned above, images contain

similar objects will generate similar vectors. The compar-

ison between vectors is done by the MSE value. The

computation of MSE value is shown in Equation (9). In

object-recognition system, samples vectors are stored in

the templates. Receiving an input image from camera, the

MSE values can be calculated for each pair of the input

image and the sample one. If the input image has an object

which is similar with any sample image in the templates,

their MSE value will smallest. Therefore, the system can

recognize the object by finding the smallest MSE value via

winner-take-all circuit. Fig. 12 shows an input image with

seven sample images. It is clear that the MSE value be-

tween the input image and the computer mouse sample

image is the smallest one. Then, the system can recognize

the input image as a computer mouse. However, if the

input image contains an object which is not in the tem-

plates, the system has to dispose of that image. For this

reason, an MSE threshold is needed. The system can dis-

pose of the input image if the smallest MSE value is still

over the threshold. The MSE threshold is chosen as via

experiment.

A completed system has been built successfully on the

Stratix III FPGA board. As can be seen in the Fig. 13, the

TV’s top-left corner contains a vector which represents for

the computer mouse in front of the camera.

Fig. 13. Completed system.

6. Conclusion

We have introduced two PCNN hardware architectures

and applied them to a real-time object-recognition system.

Both two models can generate a time-signal vector at the

speed of one vector per frame. The resource costs of

RAM-based model and pipelined model primary depend on

the image resolution and the time-signal vector length,

respectively. Based on the specify application require-

ments, the better model can be selected. A real-time ob-

ject-recognition system has been built successfully on

FPGA board based on two architectures. The experiment

results show that the percentage of recognition is 92.8%.

References
[1] R. Eckhorn, H.J. Reitboeck, M. Arndt, and P.W.

Dicke, Feature linking via synchronization among
distributed assemblies: Simulation of results from cat
cortex, Neural Computation, Vol.2, No.3, pp.
293-307, Fall 1990.

[2] Henrik Berg, Roland Olsson, Thomas Lindblad, and
José Chilo, Automatic design of pulse coupled neu-
rons for image segmentation, Neurocomputing,
Vol.71, Issues 10-12, pp. 1980-1993, June 2008.

[3] Lifeng Shang, and Zhang Yi, A class of binary images
thinning using two PCNNs, Neurocomputing, Vol.70,
Issues 4-6, pp. 1096-1101, January 2007.

[4] Jun Chen, Kosei Ishimura, and Mitsuo Wada, “Mov-
ing Object Extraction Using Multi -Tiered
Pulse-Coupled Neural Network,” Proc. SICE Annual
Conf., Vol.3, pp. 2843-2848, Sapporo, Japan, August
2004.

[5] Raul C. Muresan, Pattern recognition using
pulse-coupled neural networks and discrete Fourier
transforms, Neurocomputing, Vol.51, pp. 487-493,
April 2003.

[6] Hitoshi Yamada, Yuuki Ogawa, Kosei Ishimura, and
Mitsuo Wada, “Face Detection using Pulse -Coupled
Neural Network,” Proc. SICE Annual Conf., Vol.3,
pp. 2784-2788, Fukui, Japan, August 2003.

[7] Javier Vega-Pineda, Mario I. Chacón-Murguía, and
Roberto Camarillo-Cisneros, “Synthesis of
Pulse-Coupled Neural Networks in FPGA for Re-
al-time Image Segmentation,” Proc. Int. Joint Conf.
Neural Networks, pp. 4051-4055, Vancouver, Canada,
July 2006.

[8] H.S. Ranganath, and G. Kuntimad, Object Detection
Using Pulse Coupled Neural Networks, IEEE Trans.
Neural Networks, Vol.10, Issue 3, pp. 615-620, May
1999.

[9] Nguyen Ngoc Hung, Nguyen Xuan Thuan, Huynh
Huu Thuan, and Bui Trong Tu, “A Hardware Imple-
mentation of Pulse Coupled Neural Network for I m-
age Feature Extraction ,” Proc. Integrated Circuits
and Devices in Vietnam (ICDV), pp. 92-97, Hanoi,
Vietnam, August 2011.

[10] Zhaobin Wang, Yide Ma, Feiyan Cheng, and Lizhen
Yang, Review of pulse-coupled neural networks,
Image and Vision Computing, Vol. 28, Issue 1, pp.
5-13, January 2010.

