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Abstract  In this paper, the authors present two hardware architectures of Pulse-Coupled Neural Network (PCNN) which 

can be applied to real-time object-recognition systems. They are RAM-based model and pipelined model. Both models can 

generate a time-signal vector at the speed of one vector per video frame. Two architectures have been successfully implement-

ed on FPGA chips. Based on these models, a complete recognition system including a camera, a PCNN core, a search engine 

and a DVI controller has been built and tested so as to verify the operation of the models. The experiment results show that the 

percentage of recognition is 92.8%. 
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1. Introduction 

Pulse-Coupled Neural Network (PCNN) is biologically 

inspired neural network based on cat’s visual cortical 

neurons. Since introduced by Eckhon in 1990 [1], PCNN 

model has proven its vital role in digital image processing, 

such as image segmentation [2], image thinning [3], mo-

tion detection [4], pattern recognition [5], face detection 

[6] etc. 

Although the PCNN is suitable for many fields of image 

processing, it is difficult to achieve real-time processing 

by software implementation. Hardware implementation is 

a solution to overcome such an issue. Javier et al [7] pre-

sented an FPGA system that can operate at high speed, but 

it is only suitable for those applications that require 

one-time operation. In the object recognition system, it is 

required iterative processing of PCNN. Ranganath et al [8] 

proposed such a hardware design, but it needs multiple 

PCNN layers and dynamic parameters. In our previous 

work [9], an implementation using PCNN algorithm was 

proposed for feature extraction at high speed. However, 

the hardware time-signal vector generated by hardware 

was not perfectly identical to the ideal vector generated by 

software implementation. In this paper,  we present two 

PCNN hardware architectures which can generate 

time-signal vector highly similar to the ideal one. They are 

RAM-based model and pipelined model. The RAM-based 

model utilizes RAMs to simulate the neurons network. By 

an N-cycle processing, the RAM-based model generates 

one N-element time-signal vector, which can be used asa 

feature vector. The pipelined model divides the operation 

into N stages; each stage generates one of N elements. The 

resource costs of RAM-based model depend on the image 

size and that of the pipelined model mainly depend on the 

number element of time-signal vector. Both models can 

generate time-signal vector at the speed of one vector per 

video frame. Based on these architectures, a real-time 

object-recognition system has been built , including cam-

era, PCNN core, search engine, and DVI controller. The 

system can recognize an object based on the image 

time-signal vector generated by the PCNN core. Each 

image generates a unique vector. However, if two images 

contain similar objects, they will generate similar vectors.  

The remainder of this paper is organized as follows. 

Section 2 briefly reviews the PCNN model and shows an 

implementation of a neuron. Section 3 presents the ob-

ject-recognition system. Section 4 proposes two PCNN 

hardware architectures. Section 5 shows the experiment 

results of two models and the system performance. The 

conclusion is given in section 6. 

 

2. The PCNN model 

2.1. A neuron structure 

A single neuron structure is shown in Fig. 1  (Fig. 1 in 

[10]). The neuron consists of three parts: feeding field (the 

receptive field or dendritic tree in some references), link-

ing modulation, and pulse generator. The PCNN model is 

described as iteration by the following equations.  

 

          𝐹𝑖𝑗[𝑛] = 𝑆𝑖𝑗 + 𝐹𝑖𝑗[𝑛 − 1]𝑒−𝛼𝐹

+ 𝑉𝐹 ∑ 𝑀𝑖𝑗𝑘𝑙

𝑘𝑙

𝑌𝑘𝑙[𝑛 − 1]                                  (1) 

          𝐿𝑖𝑗[𝑛] = 𝐿𝑖𝑗[𝑛 − 1]𝑒−𝛼𝐿

+ 𝑉𝐿 ∑ 𝑊𝑖𝑗𝑘𝑙

𝑘𝑙

𝑌𝑘𝑙[𝑛 − 1]                                  (2) 

          𝑈𝑖𝑗[𝑛] = 𝐹𝑖𝑗[𝑛](1 + 𝛽𝐿𝑖𝑗[𝑛])                                                    (3) 

          𝑇𝑖𝑗[𝑛] = 𝑇𝑖𝑗[𝑛 − 1]𝑒−𝛼𝑇 + 𝑉𝑇𝑌𝑖𝑗[𝑛 − 1]                                 (4) 



 

  
 

 

          𝑌𝑖𝑗[𝑛] = {
1 → 𝑈𝑖𝑗[𝑛] > 𝑇𝑖𝑗[𝑛]

0 → 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
                                                  (5) 

According to those equations, the operation of a single 

neuron at step n depend on its corresponding pixel  (  𝑆𝑖𝑗), 

previous pulses from surrounding neurons (𝑌𝑘𝑙[𝑛 − 1]), and 

the last internal activities of the neuron itself  (  𝐹𝑖𝑗[𝑛 − 1], 

 𝐿𝑖𝑗[𝑛 − 1] , and  𝑇𝑖𝑗[𝑛 − 1] ). M and W are two synaptic 

weight matrixes. VF, VL, VT,  𝛼𝐹 ,  𝛼𝐿 ,  𝛼𝑇 , and 𝛽 are the 

PCNN parameters and should be considered as constant s.  

The time-signal vector can be generated by summing the 

number of pulses at the output of PCNN, which is shown 

by the equation (6), where n is the iteration step. With N 

steps, we have the N elements time-signal vector (vector 

G), is unique for each image.  

 

                            𝐺[𝑛] = ∑ 𝑌𝑖𝑗[𝑛] 

𝑖𝑗

                                                 (6) 

 

2.2. A neuron implementation 

If the field of surrounding neurons is too large, the 

PCNN loses its segmentation quality, and the time-signal 

vector is going to saturate in several steps. With saturated 

vector, there is difficult to identify the difference among 

images. However, choosing a small field will reduce the 

feature extraction ability of PCNN. A matrix of 3x3 sur-

rounding neurons is the appropriated field. Two synaptic 

weight matrixes M and W are selected equally. 

The top-view of hardware implementation for a neuron 

is shown in Fig. 2. The input is 8-bit grayscale image. The 

signal iS_data is the corresponding pixel. iY_data are the 

pulses from surrounding neurons and iF_data, iL_data and 

iT_data represent for the internal variables in the previous 

step. oY_data transmits the neuron pulse while the others 

transmit the internal variables. The details of the impl e-

mentation are shown in Fig. 6. These multiple parameters 

aF, aL and aT represent for  exp (−𝛼𝐹) , exp(−𝛼𝐿)  and 

exp (−𝛼𝑇) in above equations, respectively.  

 

Fig. 2.  Top-view of a neuron implementation.  

 

 

Fig. 3. The system block diagram.  

 

3. The object-recognition system 

The block diagram of the object-recognition system has 

shown in Fig. 3. A camera transmits the image data to the 

system with 640x480 image size and 24-bit color per pixel. 

The camera controller writes the image data into DDR2 

RAM and Grayscale resampler by its memory-mapped 

interface and streaming interface, respectively. The DVI 

controller reads raw image data from DDR2 RAM and  

displays them on a monitor. Grayscale resampler converts 

24-bit color to 8-bit grayscale. Scaler and clipper reduce 

the image size into 128x128 pixels. After this, the PCNN 

core extracts time-signal vector based on the received 



 

  
 

 

image, and then transmits i t to search engine through 

Avalon bus. The search engine computes the image en-

tropy by Equation (7) and (8). The search engine also 

consist the templates which contain sample object vectors. 

The comparison between the computed entropy and the 

templates is done by the MSE values. The MSE values are 

computed by Equation (9).  As soon as the search engine 

had finished its work, it notices the results by GPIO (i.e. 

LEDs, LCD, etc.). 

 

                   𝑝𝑛 =
𝐺[𝑛]

𝑃𝐻𝑉
                                                                          (7) 

 

                  𝐸𝑛(𝑝) = −𝑝𝑛𝑙𝑜𝑔2𝑝𝑛 − (1 − 𝑝𝑛)𝑙𝑜𝑔2(1 − 𝑝𝑛)             (8) 

 

                𝑀𝑆𝐸 =
1

𝑁
∑  [𝐸𝑛(𝑝) − 𝐸𝑛

′ (𝑝)]2

𝑛

                                       (9) 

 

where, G[n]  is the vector, PHV is the number of total 

image pixels, pn is the probabilities when neurons are 

activated, i.e.  𝑌𝑖𝑗[𝑛] = 1, 𝐸𝑛(𝑝) is the image entropy, and 

𝐸𝑛
′ (𝑝) is the sample entropy, respectively.  

 

4. Proposed hardware architectures 

The 8-bit grayscale image has HxV resolution. P HV de-

notes the number of the total pixels in the image, i.e. H*V. 

The output vector G has N elements.  

 

Fig. 4. PCNN RAM-based block diagram.  

 

Fig. 5. The operation of RAMs. 

 

4.1. RAM-based architecture 

PCNN model is a two-dimensional network with a 1:1 

corresponding between image pixels and network neurons. 

Instead of implementing a network that contains P HV node 

neurons, the cost can be reduced by some neurons for 

computing and RAMs for storing the variables of the 

network while the system processing.  

The system is mainly composed of two parts: the 

memory part (MP) and the logic part (LP) as shown in Fig. 

4. MP contains three RAMs to stores the input image  

(RAM_S), the internal variables (RAM_FLT) and the 

output binary image (RAM_Y). Each RAM has the same 

amount of memory cells, i.e. PHV cells. However, each 

RAM has the different cell width. RAM_S, RAM_FLT, and 

RAM_Y have 8 bits, 28 bits and 1 bit per memory cell , 

respectively. The total RAM capacity can be calculated in 

Equation (10). In LP, the controller controls the RAM 

address lines while RAM data lines are connected to the 

block neuron. Counter G counts the pulse produced by the 

block neuron to computes the point value.  

 

                            𝐵𝑅𝐴𝑀 = 37𝐻𝑉 (𝑏𝑖𝑡)                                                (10) 

 

The operation divided into two phases: inactive phase 

and active phase. In the inactive phase, the video frame is 

written into RAM_S. When the writing process is finish, 



 

  
 

 

the system turns into active phase to generate a vector G. 

To avoid the overlapping of adjacent frames, RAM_S has 

to be read-only during the active phase. RAM_FLT and 

RAM_Y have the initial value of zeros. There are P HV 

nodes in the network and their variables are stored in 

RAMs. LP accesses to RAMs and iterates the processing N 

cycles in order to generate an N-element vector G. In the 

basic model, the block neuron is considered as a single 

neuron. With one neuron, LP can process one node per 

clock cycle. The details of communication between LP and 

RAMs are described in Fig. 5. A i are the address of node[i]. 

d i are the last data of node[i], and D i are the new data of 

node[i] that will be written back into RAMs. After P HV 

clock cycles, LP generates one of N elements of vector G. 

After N-cycle processing, the system generates a full 

vector G, and the active phase is completed. The system 

returns to the inactive phase. 

Since block neuron contains a single neuron, LP can 

process only one node per clock cycle . With a group of 

neurons implemented in block neuron instead of one, the 

system can speed up the processing time. For example, if 

block neuron includes a matrix of 2x2 neurons, the system 

can lower the processing time four times.  The LP resource 

costs are affected by the number of neurons in block neu-

ron. However, the total RAM capacity in the MP remains 

constantly. The number of neurons in block neuron de-

pends on the length of vector G. In order to generate vec-

tor at the speed of one vector per frame, the number of 

neurons has to be N. 

 

 

Fig. 7. The PCNN system with N stages pipelined.  

 

Fig. 8. The processing times of N stages are alternated.  

 

Fig. 9. Top-view of a general stage design.  

 

4.2. Pipelined architecture 

Pipelined model is constructed based on the separation 

of the operation into N independent stages,  each stage 

computes one of N elements vector G. 

In order to achieve its goal, a stage needs the infor-

mation of all node neurons in the network from the pre-

vious stage and the input image pixel. The top -view of one 

stage is shown in Fig. 9. At every clock when iValid is 

asserted, a stage receives one node information including 

pixel values (i.e. iData_S), internal variables (i.e. iData_F, 

iData_L, iData_T), and pulse (i.e. iData_Y). As soon as a 

stage has finished its work, it  asserts oDone signal. The 

oG signal carries the final point value. The first and the 

last stage are designed differently with the common design 

in Fig.9. Owing to the initial value of neuron variables and 

pulse are zeros, stage 1 needs only the input pixel value to 

operate. The final stage has not to transmit its network 

information, and then the output signals are only oDone 

and oG. Fig. 7 describes the system with N-stage pipelin-

ing. 

A i, j[n] represents a node in the network where i ∈ (1,H) 

is the column number, j ∈ (1,V) is the row number, and n 

∈ (1,N) is the number of stage. In order to operate, node 

A i, j[n] requires the pixel value (S i, j), internal variables 

(F i, j[n-1], L i, j[n-1], T i, j[n-1]), and pulses from 3x3 matrix 

surrounding neurons (Y i-1 , j-1[n-1], Y i-1 , j[n-1], Y i-1 , j+1[n-1], 

Y i, j-1[n-1], Y i, j[n-1], Y i, j+1[n-1], Y i+1, j-1[n-1], Y i+1, j[n-1], 

Y i+1, j+1[n-1]). A stage starts the processing with node 

A1,1[n] and finishes with node AH,V[n]. Node A1,1[n] is at 

the corner of the network which has four surrounding 

neurons (Y1,1[n-1], Y1,2[n-1], Y2,1[n-1], Y2,2[n]) instead of 

nine ones. Stage n starts the processing whenever it has 

enough information to process its first node, so stage[n] 

has to wait for stage[n-1] first (H+2) nodes. The pro-

cessing times of N-stage are alternated as shown in Fig. 8 . 

The system is ready to receive a new input image after 

stage 1 done, and one vector G is generated each time 

stage N done. A stage needs buffers to store (H+2) nodes 

information results from deviation between two adjacent 



 

  
 

 

stages processing time. There are five buffers to store 

pixel values, internal variables and pulses as shown in Fig. 

10. Buffers are constructed by shift registers . The pixel 

values and internal variables buffers utilize (H+2) regis-

ters for each buffer. The pulses of surrounding neurons are 

3x3 matrixes leading to three lines buffers are required for 

storing them. With the different data width of S i, j, F i, j[n-1], 

L i, j[n-1], T i, j[n-1], and Y[n-1], the total buffers capacity 

between two adjacent stages can be calculated by Equation 

(11). The entire buffers capacity in the system can be 

calculated by Equation (12). 

 

        𝐵 = 39𝐻 + 72 (𝑏𝑖𝑡)                                                                    (11) 

 

        𝐵𝑃𝑖𝑝𝑒 = (𝑁 − 1) ∗ 𝐵 = (𝑁 − 1) ∗ (39𝐻 + 72) (𝑏𝑖𝑡)         (12) 

 

Fig. 10 describes a stage design of including buffers, 

one PCNN neuron, controller, and counter. By counting 

the iValid signal, the controller knows the status of the 

previous stage. The controller generates the oValid signal 

and controls the internal activities of the stage. Counter 

count the pulse carried by oData_Y output signal to com-

putes the point value of vector  G. Counter reset by the 

controller each time the stage done. Because the first stage 

needs only input pixel values to operate, its input signals 

are only iData_S and iValid. Therefore, there are no buff-

ers in the first stage. The last stage is similar with com-

mon design in Fig. 10, but the neuron output signal is only 

oY_data, and the controller does not need to generate the 

oValid signal.  

Table 2. The PCNN parameters.  

Parameter ∝𝐹 ∝𝐿 ∝𝑇 𝑉𝐹 𝑉𝐿 𝑉𝑇 𝛽 

Value 0.5 1 1 0.02 0.02 10 0.2 

 

 

Fig. 10. A stage design. 

 

 

Fig. 11. The comparison between vectors.  

 

5. Experiment results 

Both two models have the same processing speed re-

garding the resource costs. The pipelined model resembles 

the RAM-based model in that the number of implemented 

PCNN neuron is the same. The difference of resource costs 

came from Equation (10) and Equation (12). As can be 

seen in two equations, the resource costs of RAM-based 

model depend on the image resolution and that of the 

pipelined model mainly depend on the element number of 

vector G. Based on requirements of image resolution and 

vector length, the better model can be selected by above 

two equations. 

Table 1.  Hardware usage results of the PCNN cores  and 

search engine. 

 RAM-based 

model 

Pipelined 

model 

Search 

Engine 

ALUTs 12,739 9,423 234 

Register 1.84 KB 17.5 KB 7 B 

Memory (KB) 72 0 0.44 

DSP block 86 38 8 

Fmax (MHz) 54.67 70.61 146.49 

 

 

Fig. 12. The MSE values between the input image and the 

sample images.  



 

  
 

 

Two models are verified by the Modelsim simulator and 

implemented on Altera Stratix III board with an 

EP3SL150F1152C2 FPGA chip. The system parameters H, 

V, and N are 128, 128, and 32, respectively. It means that 

the image size is 128x128, and time-signal vector length is 

32 elements. Tab. 1 shows the resource utilization of two 

architectures and search engine. From the Tab. 2, PCNN 

parameters are selected for object-recognition applications. 

Fig. 11 shows the comparison between three vectors: the 

ideal vector is calculated by Matlab and others are ob-

tained from hardware designs. It is clear that both models 

generate vectors which are highly similar to the ideal one. 

An image has a unique vector which represents for the 

object in that image. As mentioned above, images contain 

similar objects will generate similar vectors.  The compar-

ison between vectors is done by the MSE value. The 

computation of MSE value is shown in Equation (9). In 

object-recognition system, samples vectors are stored in 

the templates. Receiving an input image from camera, the 

MSE values can be calculated for each pair of the input 

image and the sample one. If the input image has an object 

which is similar with any sample image in the templates, 

their MSE value will smallest. Therefore, the system can 

recognize the object by finding the smallest MSE value via 

winner-take-all circuit. Fig. 12 shows an input image with 

seven sample images. It is clear that the MSE value be-

tween the input image and the computer mouse sample 

image is the smallest one. Then, the system can recognize 

the input image as a computer mouse. However, if the 

input image contains an object which is not in the tem-

plates, the system has to dispose of that image. For this 

reason, an MSE threshold is needed. The system can dis-

pose of the input image if the smallest MSE value is still 

over the threshold. The MSE threshold is chosen as via 

experiment. 

A completed system has been built successfully on the 

Stratix III FPGA board. As can be seen in the Fig. 13, the 

TV’s top-left corner contains a vector which represents for 

the computer mouse in front of the camera. 

 

Fig. 13.  Completed system. 

6. Conclusion 

We have introduced two PCNN hardware architectures 

and applied them to a real-time object-recognition system. 

Both two models can generate a time-signal vector at the 

speed of one vector per frame. The resource costs of 

RAM-based model and pipelined model primary depend on 

the image resolution and the time-signal vector length, 

respectively. Based on the specify application require-

ments, the better model can be selected. A real-time ob-

ject-recognition system has been built  successfully on 

FPGA board based on two architectures. The experiment 

results show that the percentage of recognition is 92.8%. 
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